Chapter 9: Problem 68
Consider the sequence \(\left\\{F_{n}\right\\}\) defined by $$F_{n}=\sum_{k=1}^{\infty} \frac{1}{k(k+n)^{\prime}}$$ for \(n=0,1,2, \ldots . .\) When \(n=0,\) the series is a \(p\) -series, and we have \(F_{0}=\pi^{2} / 6\) (Exercises 65 and 66 ). for \(n=0,1,2, \ldots . .\) When \(n=0,\) the series is a \(p\) -series, and we have \(F_{0}=\pi^{2} / 6\) (Exercises 65 and 66 ).
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.