Chapter 9: Problem 65
For the following telescoping series, find a formula for the nth term of the sequence of partial sums \(\left\\{S_{n}\right\\} .\) Then evaluate lim \(S_{n}\) to obtain the value of the series or state that the series diverges. \(^{n \rightarrow \infty}\) $$\sum_{k=1}^{\infty}\left(\frac{1}{\sqrt{k+1}}-\frac{1}{\sqrt{k+3}}\right)$$
Short Answer
Step by step solution
Write down the general term of the series
Write down the partial sum of the series up to n terms
Cancel the terms to find a simplified expression for partial sum
Find the limit of the partial sum as n approaches infinity
Unlock Step-by-Step Solutions & Ace Your Exams!
-
Full Textbook Solutions
Get detailed explanations and key concepts
-
Unlimited Al creation
Al flashcards, explanations, exams and more...
-
Ads-free access
To over 500 millions flashcards
-
Money-back guarantee
We refund you if you fail your exam.
Over 30 million students worldwide already upgrade their learning with Vaia!
Key Concepts
These are the key concepts you need to understand to accurately answer the question.