Chapter 9: Problem 61
For the following infinite series, find the first four terms of the sequence of partial sums. Then make a conjecture about the value of the infinite series. $$4+0.9+0.09+0.009+\cdots$$
Chapter 9: Problem 61
For the following infinite series, find the first four terms of the sequence of partial sums. Then make a conjecture about the value of the infinite series. $$4+0.9+0.09+0.009+\cdots$$
All the tools & learning materials you need for study success - in one app.
Get started for freeIn Section 3, we established that the geometric series \(\Sigma r^{k}\)
converges provided \(|r|<1\). Notice that if \(-1
Convergence parameter Find the values of the parameter \(p>0\) for which the following series converge. $$\sum_{k=2}^{\infty} \frac{1}{k \ln k(\ln \ln k)^{p}}$$
Convergence parameter Find the values of the parameter \(p>0\) for which the following series converge. $$\sum_{k=2}^{\infty} \frac{\ln k}{k^{p}}$$
Given any infinite series \(\Sigma a_{k},\) let \(N(r)\) be the number of terms of the series that must be summed to guarantee that the remainder is less than \(10^{-r}\), where \(r\) is a positive integer. a. Graph the function \(N(r)\) for the three alternating \(p\) -series \(\sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{k^{p}},\) for \(p=1,2,\) and \(3 .\) Compare the three graphs and discuss what they mean about the rates of convergence of the three series. b. Carry out the procedure of part (a) for the series \(\sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{k !}\) and compare the rates of convergence of all four series.
Consider the geometric series $$S=\sum_{k=0}^{\infty} r^{k}$$ which has the value \(1 /(1-r)\) provided \(|r|<1 .\) Let \(S_{n}=\sum_{k=0}^{n-1} r^{k}=\frac{1-r^{n}}{1-r}\) be the sum of the first \(n\) terms. The remainder \(R_{n}\) is the error in approximating \(S\) by \(S_{n} .\) Show that $$R_{n}=\left|S-S_{n}\right|=\left|\frac{r^{n}}{1-r}\right|$$
What do you think about this solution?
We value your feedback to improve our textbook solutions.