Chapter 9: Problem 59
For the following infinite series, find the first four terms of the sequence of partial sums. Then make a conjecture about the value of the infinite series. $$0.3+0.03+0.003+\cdots$$
Chapter 9: Problem 59
For the following infinite series, find the first four terms of the sequence of partial sums. Then make a conjecture about the value of the infinite series. $$0.3+0.03+0.003+\cdots$$
All the tools & learning materials you need for study success - in one app.
Get started for freeEvaluate the limit of the following sequences. $$a_{n}=\frac{7^{n}}{n^{7} 5^{n}}$$
Suppose a ball is thrown upward to a height of \(h_{0}\) meters. Each time the ball bounces, it rebounds to a fraction r of its previous height. Let \(h_{n}\) be the height after the nth bounce and let \(S_{n}\) be the total distance the ball has traveled at the moment of the nth bounce. a. Find the first four terms of the sequence \(\left\\{S_{n}\right\\}\) b. Make a table of 20 terms of the sequence \(\left\\{S_{n}\right\\}\) and determine a plausible value for the limit of \(\left\\{S_{n}\right\\}.\) $$h_{0}=20, r=0.75$$
Given any infinite series \(\Sigma a_{k},\) let \(N(r)\) be the number of terms of the series that must be summed to guarantee that the remainder is less than \(10^{-r}\), where \(r\) is a positive integer. a. Graph the function \(N(r)\) for the three alternating \(p\) -series \(\sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{k^{p}},\) for \(p=1,2,\) and \(3 .\) Compare the three graphs and discuss what they mean about the rates of convergence of the three series. b. Carry out the procedure of part (a) for the series \(\sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{k !}\) and compare the rates of convergence of all four series.
Consider the sequence \(\left\\{x_{n}\right\\}\) defined for \(n=1,2,3, \ldots\) by $$x_{n}=\sum_{k=n+1}^{2 n} \frac{1}{k}=\frac{1}{n+1}+\frac{1}{n+2}+\dots+\frac{1}{2 n}$$ a. Write out the terms \(x_{1}, x_{2}, x_{3}\) b. Show that \(\frac{1}{2} \leq x_{n}<1,\) for \(n=1,2,3, \ldots\) c. Show that \(x_{n}\) is the right Riemann sum for \(\int_{1}^{2} \frac{d x}{x}\) using \(n\) subintervals. d. Conclude that \(\lim _{n \rightarrow \infty} x_{n}=\ln 2\)
Consider the following sequences defined by a recurrence relation. Use a calculator, analytical methods, and/or graphing to make a conjecture about the value of the limit or determine that the limit does not exist. $$a_{n+1}=\frac{1}{2}\left(a_{n}+2 / a_{n}\right) ; a_{0}=2, n=0,1,2, \dots$$
What do you think about this solution?
We value your feedback to improve our textbook solutions.