Chapter 9: Problem 57
Find the limit of the following sequences or state that they diverge. $$\left\\{\frac{2 \tan ^{-1} n}{n^{3}+4}\right\\}$$
Chapter 9: Problem 57
Find the limit of the following sequences or state that they diverge. $$\left\\{\frac{2 \tan ^{-1} n}{n^{3}+4}\right\\}$$
All the tools & learning materials you need for study success - in one app.
Get started for freeA glimpse ahead to power series Use the Ratio Test to determine the values of \(x \geq 0\) for which each series converges. $$\sum_{k=1}^{\infty} \frac{x^{k}}{k^{2}}$$
Convergence parameter Find the values of the parameter \(p>0\) for which the following series converge. $$\sum_{k=2}^{\infty}\left(\frac{\ln k}{k}\right)^{p}$$
The Riemann zeta function is the subject of extensive research and is associated with several renowned unsolved problems. It is defined by \(\zeta(x)=\sum_{k=1}^{\infty} \frac{1}{k^{x}}\). When \(x\) is a real number, the zeta function becomes a \(p\) -series. For even positive integers \(p,\) the value of \(\zeta(p)\) is known exactly. For example, $$ \sum_{k=1}^{\infty} \frac{1}{k^{2}}=\frac{\pi^{2}}{6}, \quad \sum_{k=1}^{\infty} \frac{1}{k^{4}}=\frac{\pi^{4}}{90}, \quad \text { and } \quad \sum_{k=1}^{\infty} \frac{1}{k^{6}}=\frac{\pi^{6}}{945}, \ldots $$ Use estimation techniques to approximate \(\zeta(3)\) and \(\zeta(5)\) (whose values are not known exactly) with a remainder less than \(10^{-3}\).
A glimpse ahead to power series Use the Ratio Test to determine the values of \(x \geq 0\) for which each series converges. $$\sum_{k=1}^{\infty} \frac{x^{k}}{k}$$
A fishery manager knows that her fish population naturally increases at a rate of \(1.5 \%\) per month, while 80 fish are harvested each month. Let \(F_{n}\) be the fish population after the \(n\) th month, where \(F_{0}=4000\) fish. a. Write out the first five terms of the sequence \(\left\\{F_{n}\right\\}\). b. Find a recurrence relation that generates the sequence \(\left\\{F_{n}\right\\}\). c. Does the fish population decrease or increase in the long run? d. Determine whether the fish population decreases or increases in the long run if the initial population is 5500 fish. e. Determine the initial fish population \(F_{0}\) below which the population decreases.
What do you think about this solution?
We value your feedback to improve our textbook solutions.