Chapter 9: Problem 56
Find the limit of the following sequences or state that they diverge. $$\left\\{\frac{\cos (n \pi / 2)}{\sqrt{n}}\right\\}$$
Chapter 9: Problem 56
Find the limit of the following sequences or state that they diverge. $$\left\\{\frac{\cos (n \pi / 2)}{\sqrt{n}}\right\\}$$
All the tools & learning materials you need for study success - in one app.
Get started for freeA well-known method for approximating \(\sqrt{c}\) for positive real numbers \(c\) consists of the following recurrence relation (based on Newton's method). Let \(a_{0}=c\) and $$a_{n+1}=\frac{1}{2}\left(a_{n}+\frac{c}{a_{n}}\right), \quad \text { for } n=0,1,2,3, \dots$$ a. Use this recurrence relation to approximate \(\sqrt{10} .\) How many terms of the sequence are needed to approximate \(\sqrt{10}\) with an error less than \(0.01 ?\) How many terms of the sequence are needed to approximate \(\sqrt{10}\) with an error less than \(0.0001 ?\) (To compute the error, assume a calculator gives the exact value.) b. Use this recurrence relation to approximate \(\sqrt{c},\) for \(c=2\) \(3, \ldots, 10 .\) Make a table showing how many terms of the sequence are needed to approximate \(\sqrt{c}\) with an error less than \(0.01.\)
Consider the following sequences defined by a recurrence relation. Use a calculator, analytical methods, and/or graphing to make a conjecture about the value of the limit or determine that the limit does not exist. $$a_{n+1}=2 a_{n}\left(1-a_{n}\right) ; a_{0}=0.3, n=0,1,2, \dots$$
Consider the following situations that generate a sequence. a. Write out the first five terms of the sequence. b. Find an explicit formula for the terms of the sequence. c. Find a recurrence relation that generates the sequence. d. Using a calculator or a graphing utility, estimate the limit of the sequence or state that it does not exist. A material transmutes \(50 \%\) of its mass to another element every 10 years due to radioactive decay. Let \(M_{n}\) be the mass of the radioactive material at the end of the \(n\) th decade, where the initial mass of the material is \(M_{0}=20 \mathrm{g}.\)
Determine whether the following series converge absolutely or conditionally, or diverge. $$\sum_{k=1}^{\infty} \frac{(-1)^{k} k^{2}}{\sqrt{k^{6}+1}}$$
Infinite products An infinite product \(P=a_{1} a_{2} a_{3} \ldots,\) which is denoted \(\prod_{k=1}^{\infty} a_{k}\) is the limit of the sequence of partial products \(\left\\{a_{1}, a_{1} a_{2}, a_{1} a_{2} a_{3}, \dots\right\\}\) a. Show that the infinite product converges (which means its sequence of partial products converges) provided the series \(\sum_{k=1}^{\infty} \ln a_{k}\) converges. b. Consider the infinite product $$P=\prod_{k=2}^{\infty}\left(1-\frac{1}{k^{2}}\right)=\frac{3}{4} \cdot \frac{8}{9} \cdot \frac{15}{16} \cdot \frac{24}{25} \cdots$$ Write out the first few terms of the sequence of partial products, $$P_{n}=\prod_{k=2}^{n}\left(1-\frac{1}{k^{2}}\right)$$ (for example, \(P_{2}=\frac{3}{4}, P_{3}=\frac{2}{3}\) ). Write out enough terms to determine the value of the product, which is \(\lim _{n \rightarrow \infty} P_{n}\). c. Use the results of parts (a) and (b) to evaluate the series $$\sum_{k=2}^{\infty} \ln \left(1-\frac{1}{k^{2}}\right)$$
What do you think about this solution?
We value your feedback to improve our textbook solutions.