Chapter 9: Problem 52
Write each repeating decimal first as a geometric series and then as a fraction (a ratio of two integers). $$1.00 \overline{39}=1.00393939 \ldots$$
Chapter 9: Problem 52
Write each repeating decimal first as a geometric series and then as a fraction (a ratio of two integers). $$1.00 \overline{39}=1.00393939 \ldots$$
All the tools & learning materials you need for study success - in one app.
Get started for freeHere is a fascinating (unsolved) problem known as the hailstone problem (or the Ulam Conjecture or the Collatz Conjecture). It involves sequences in two different ways. First, choose a positive integer \(N\) and call it \(a_{0} .\) This is the seed of a sequence. The rest of the sequence is generated as follows: For \(n=0,1,2, \ldots\) $$a_{n+1}=\left\\{\begin{array}{ll} a_{n} / 2 & \text { if } a_{n} \text { is even } \\ 3 a_{n}+1 & \text { if } a_{n} \text { is odd. } \end{array}\right.$$ However, if \(a_{n}=1\) for any \(n,\) then the sequence terminates. a. Compute the sequence that results from the seeds \(N=2,3\), \(4, \ldots, 10 .\) You should verify that in all these cases, the sequence eventually terminates. The hailstone conjecture (still unproved) states that for all positive integers \(N,\) the sequence terminates after a finite number of terms. b. Now define the hailstone sequence \(\left\\{H_{k}\right\\},\) which is the number of terms needed for the sequence \(\left\\{a_{n}\right\\}\) to terminate starting with a seed of \(k\). Verify that \(H_{2}=1, H_{3}=7,\) and \(H_{4}=2\). c. Plot as many terms of the hailstone sequence as is feasible. How did the sequence get its name? Does the conjecture appear to be true?
Series of squares Prove that if \(\sum a_{k}\) is a convergent series of positive terms, then the series \(\Sigma a_{k}^{2}\) also converges.
Evaluate the limit of the following sequences. $$a_{n}=\frac{4^{n}+5 n !}{n !+2^{n}}$$
Suppose a function \(f\) is defined by the geometric series \(f(x)=\sum_{k=0}^{\infty} x^{2 k}\) a. Evaluate \(f(0), f(0.2), f(0.5), f(1),\) and \(f(1.5),\) if possible. b. What is the domain of \(f ?\)
Suppose an alternating series \(\sum(-1)^{k} a_{k}\) converges to \(S\) and the sum of the first \(n\) terms of the series is \(S_{n}\) Suppose also that the difference between the magnitudes of consecutive terms decreases with \(k\). It can be shown that for \(n \geq 1,\) $$\left|S-\left[S_{n}+\frac{(-1)^{n+1} a_{n+1}}{2}\right]\right| \leq \frac{1}{2}\left|a_{n+1}-a_{n+2}\right|$$ a. Interpret this inequality and explain why it gives a better approximation to \(S\) than simply using \(S_{n}\) to approximate \(S\). b. For the following series, determine how many terms of the series are needed to approximate its exact value with an error less than \(10^{-6}\) using both \(S_{n}\) and the method explained in part (a). (i) \(\sum_{k=1}^{\infty} \frac{(-1)^{k}}{k}\) (ii) \(\sum_{k=2}^{\infty} \frac{(-1)^{k}}{k \ln k}\) (iii) \(\sum_{k=2}^{\infty} \frac{(-1)^{k}}{\sqrt{k}}\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.