Chapter 9: Problem 46
Write each repeating decimal first as a geometric series and then as a fraction (a ratio of two integers). $$0 . \overline{27}=0.272727 \ldots$$
Chapter 9: Problem 46
Write each repeating decimal first as a geometric series and then as a fraction (a ratio of two integers). $$0 . \overline{27}=0.272727 \ldots$$
All the tools & learning materials you need for study success - in one app.
Get started for freeDetermine whether the following series converge absolutely or conditionally, or diverge. $$\sum_{k=1}^{\infty} \frac{(-1)^{k} k}{2 k+1}$$
Prove that the drug dose sequence in Example 5 $$d_{n+1}=0.5 d_{n}+100, d_{1}=100, \quad \text { for } n=1,2,3, \ldots$$ is bounded and monotonic.
Consider the following sequences defined by a recurrence relation. Use a calculator, analytical methods, and/or graphing to make a conjecture about the value of the limit or determine that the limit does not exist. $$a_{n+1}=2 a_{n}\left(1-a_{n}\right) ; a_{0}=0.3, n=0,1,2, \dots$$
Consider the following sequences defined by a recurrence relation. Use a calculator, analytical methods, and/or graphing to make a conjecture about the value of the limit or determine that the limit does not exist. $$a_{n+1}=4 a_{n}\left(1-a_{n}\right) ; a_{0}=0.5, n=0,1,2, \dots$$
Convergence parameter Find the values of the parameter \(p>0\) for which the following series converge. $$\sum_{k=1}^{\infty} \frac{1 \cdot 3 \cdot 5 \cdots(2 k-1)}{p^{k} k !}$$
What do you think about this solution?
We value your feedback to improve our textbook solutions.