Chapter 9: Problem 43
Use the properties of infinite series to evaluate the following series. $$\sum_{k=1}^{\infty} \frac{4}{12^{k}}$$
Chapter 9: Problem 43
Use the properties of infinite series to evaluate the following series. $$\sum_{k=1}^{\infty} \frac{4}{12^{k}}$$
All the tools & learning materials you need for study success - in one app.
Get started for freeEvaluate the limit of the following sequences. $$a_{n}=\frac{n^{8}+n^{7}}{n^{7}+n^{8} \ln n}$$
Consider the following situations that generate a sequence. a. Write out the first five terms of the sequence. b. Find an explicit formula for the terms of the sequence. c. Find a recurrence relation that generates the sequence. d. Using a calculator or a graphing utility, estimate the limit of the sequence or state that it does not exist. Jack took a \(200-\mathrm{mg}\) dose of a strong painkiller at midnight. Every hour, \(5 \%\) of the drug is washed out of his bloodstream. Let \(d_{n}\) be the amount of drug in Jack's blood \(n\) hours after the drug was taken, where \(d_{0}=200 \mathrm{mg}.\)
Explain the fallacy in the following argument. Let \(x=\frac{1}{1}+\frac{1}{3}+\frac{1}{5}+\frac{1}{7}+\cdots\) and \(y=\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+\frac{1}{8}+\cdots .\) It follows that \(2 y=x+y\), which implies that \(x=y .\) On the other hand, $$x-y=\left(1-\frac{1}{2}\right)+\left(\frac{1}{3}-\frac{1}{4}\right)+\left(\frac{1}{5}-\frac{1}{6}\right)+\cdots>0$$ is a sum of positive terms, so \(x>y .\) Thus, we have shown that \(x=y\) and \(x>y\).
Determine whether the following series converge absolutely or conditionally, or diverge. $$\sum_{k=1}^{\infty} \frac{(-1)^{k+1} e^{k}}{(k+1) !}$$
Determine whether the following series converge or diverge. $$\sum_{k=1}^{\infty} \frac{2^{k}+3^{k}}{4^{k}}$$
What do you think about this solution?
We value your feedback to improve our textbook solutions.