Chapter 9: Problem 2
Explain how the Root Test works.
Chapter 9: Problem 2
Explain how the Root Test works.
All the tools & learning materials you need for study success - in one app.
Get started for freeConsider the following situations that generate a sequence. a. Write out the first five terms of the sequence. b. Find an explicit formula for the terms of the sequence. c. Find a recurrence relation that generates the sequence. d. Using a calculator or a graphing utility, estimate the limit of the sequence or state that it does not exist. Jack took a \(200-\mathrm{mg}\) dose of a strong painkiller at midnight. Every hour, \(5 \%\) of the drug is washed out of his bloodstream. Let \(d_{n}\) be the amount of drug in Jack's blood \(n\) hours after the drug was taken, where \(d_{0}=200 \mathrm{mg}.\)
Suppose a ball is thrown upward to a height of \(h_{0}\) meters. Each time the ball bounces, it rebounds to a fraction r of its previous height. Let \(h_{n}\) be the height after the nth bounce and let \(S_{n}\) be the total distance the ball has traveled at the moment of the nth bounce. a. Find the first four terms of the sequence \(\left\\{S_{n}\right\\}\) b. Make a table of 20 terms of the sequence \(\left\\{S_{n}\right\\}\) and determine a plausible value for the limit of \(\left\\{S_{n}\right\\}.\) $$h_{0}=20, r=0.75$$
Suppose an alternating series \(\sum(-1)^{k} a_{k}\) converges to \(S\) and the sum of the first \(n\) terms of the series is \(S_{n}\) Suppose also that the difference between the magnitudes of consecutive terms decreases with \(k\). It can be shown that for \(n \geq 1,\) $$\left|S-\left[S_{n}+\frac{(-1)^{n+1} a_{n+1}}{2}\right]\right| \leq \frac{1}{2}\left|a_{n+1}-a_{n+2}\right|$$ a. Interpret this inequality and explain why it gives a better approximation to \(S\) than simply using \(S_{n}\) to approximate \(S\). b. For the following series, determine how many terms of the series are needed to approximate its exact value with an error less than \(10^{-6}\) using both \(S_{n}\) and the method explained in part (a). (i) \(\sum_{k=1}^{\infty} \frac{(-1)^{k}}{k}\) (ii) \(\sum_{k=2}^{\infty} \frac{(-1)^{k}}{k \ln k}\) (iii) \(\sum_{k=2}^{\infty} \frac{(-1)^{k}}{\sqrt{k}}\)
Determine whether the following statements are true and give an explanation or counterexample. a. A series that converges must converge absolutely. b. A series that converges absolutely must converge. c. A series that converges conditionally must converge. d. If \(\sum a_{k}\) diverges, then \(\Sigma\left|a_{k}\right|\) diverges. e. If \(\sum a_{k}^{2}\) converges, then \(\sum a_{k}\) converges. f. If \(a_{k}>0\) and \(\sum a_{k}\) converges, then \(\Sigma a_{k}^{2}\) converges. g. If \(\Sigma a_{k}\) converges conditionally, then \(\Sigma\left|a_{k}\right|\) diverges.
Find a series that a. converges faster than \(\sum \frac{1}{k^{2}}\) but slower than \(\sum \frac{1}{k^{3}}\) b. diverges faster than \(\sum \frac{1}{k}\) but slower than \(\sum \frac{1}{\sqrt{k}}\) c. converges faster than \(\sum \frac{1}{k \ln ^{2} k}\) but slower than \(\sum \frac{1}{k^{2}}\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.