Chapter 9: Problem 1
Explain how the Ratio Test works.
Chapter 9: Problem 1
Explain how the Ratio Test works.
All the tools & learning materials you need for study success - in one app.
Get started for freeConvergence parameter Find the values of the parameter \(p>0\) for which the following series converge. $$\sum_{k=1}^{\infty} \frac{1 \cdot 3 \cdot 5 \cdots(2 k-1)}{p^{k} k !}$$
Find a series that a. converges faster than \(\sum \frac{1}{k^{2}}\) but slower than \(\sum \frac{1}{k^{3}}\) b. diverges faster than \(\sum \frac{1}{k}\) but slower than \(\sum \frac{1}{\sqrt{k}}\) c. converges faster than \(\sum \frac{1}{k \ln ^{2} k}\) but slower than \(\sum \frac{1}{k^{2}}\)
Consider the following situations that generate a sequence. a. Write out the first five terms of the sequence. b. Find an explicit formula for the terms of the sequence. c. Find a recurrence relation that generates the sequence. d. Using a calculator or a graphing utility, estimate the limit of the sequence or state that it does not exist. The Consumer Price Index (the CPI is a measure of the U.S. cost of living) is given a base value of 100 in the year \(1984 .\) Assume the CPI has increased by an average of \(3 \%\) per year since \(1984 .\) Let \(c_{n}\) be the CPI \(n\) years after \(1984,\) where \(c_{0}=100.\)
Prove that the drug dose sequence in Example 5 $$d_{n+1}=0.5 d_{n}+100, d_{1}=100, \quad \text { for } n=1,2,3, \ldots$$ is bounded and monotonic.
Determine whether the following series converge absolutely or conditionally, or diverge. $$\sum_{k=1}^{\infty} \frac{(-1)^{k} k}{2 k+1}$$
What do you think about this solution?
We value your feedback to improve our textbook solutions.