Chapter 8: Problem 55
The reaction of certain chemical compounds can be modeled using a differential equation of the form \(y^{\prime}(t)=-k y^{n}(t),\) where \(y(t)\) is the concentration of the compound for \(t \geq 0, k>0\) is a constant that determines the speed of the reaction, and \(n\) is a positive integer called the order of the reaction. Assume that the initial concentration of the compound is \(y(0)=y_{0}>0\). a. Consider a first-order reaction \((n=1)\) and show that the solution of the initial value problem is \(y(t)=y_{0} e^{-k t}\). b. Consider a second-order reaction \((n=2)\) and show that the solution of the initial value problem is \(y(t)=\frac{y_{0}}{y_{0} k t+1}\). c. Let \(y_{0}=1\) and \(k=0.1 .\) Graph the first-order and secondorder solutions found in parts (a) and (b). Compare the two reactions.
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.