Chapter 8: Problem 54
One possible model that describes the free fall of an object in a gravitational field subject to air resistance uses the equation \(v^{\prime}(t)=g-b v,\) where \(v(t)\) is the velocity of the object for \(t \geq 0\), \(g=9.8 \mathrm{m} / \mathrm{s}^{2}\) is the acceleration due to gravity, and \(b>0\) is a constant that involves the mass of the object and the air resistance. a. Verify by substitution that a solution of the equation, subject to the initial condition \(v(0)=0,\) is \(v(t)=\frac{g}{b}\left(1-e^{-b t}\right)\). b. Graph the solution with \(b=0.1 s^{-1}\). c. Using the graph in part (c), estimate the terminal velocity \(\lim _{t \rightarrow \infty} v(t)\).
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.