Chapter 8: Problem 49
The Gompertz growth equation is often used to model the growth of tumors. Let \(M(t)\) be the mass of a tumor at time \(t \geq 0 .\) The relevant initial value problem is $$ \frac{d M}{d t}=-r M \ln \left(\frac{M}{K}\right), M(0)=M_{0} $$ a. Graph the growth rate function \(R(M)=-r M \ln \left(\frac{M}{K}\right)\) (which equals \(M^{\prime}(t)\) ) assuming \(r=1\) and \(K=4 .\) For what values of \(M\) is the growth rate positive? For what value of \(M\) is the growth rate a maximum? b. Solve the initial value problem and graph the solution for \(r=1, K=4,\) and \(M_{0}=1 .\) Describe the growth pattern of the tumor. Is the growth unbounded? If not, what is the limiting size of the tumor? c. In the general solution, what is the meaning of \(K ?\) where \(r\) and \(K\) are positive constants and \(0 < M_{0} < K\)
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.