Chapter 8: Problem 4
Give a geometrical explanation of how Euler's method works.
Chapter 8: Problem 4
Give a geometrical explanation of how Euler's method works.
All the tools & learning materials you need for study success - in one app.
Get started for freeLet \(y(t)\) be the population of a species that is being harvested, for \(t \geq 0 .\) Consider the harvesting model \(y^{\prime}(t)=0.008 y-h, y(0)=y_{0},\) where \(h\) is the annual harvesting rate, \(y_{0}\) is the initial population of the species, and \(t\) is measured in years. a. If \(y_{0}=2000,\) what harvesting rate should be used to maintain a constant population of \(y=2000,\) for \(t \geq 0 ?\) b. If the harvesting rate is \(h=200 /\) year, what initial population ensures a constant population?
A differential equation of the form \(y^{\prime}(t)=f(y)\) is said to be autonomous (the function \(f\) depends only on \(y\) ). The constant function \(y=y_{0}\) is an equilibrium solution of the equation provided \(f\left(y_{0}\right)=0\) (because then \(y^{\prime}(t)=0\) and the solution remains constant for all \(t\) ). Note that equilibrium solutions correspond to horizontal lines in the direction field. Note also that for autonomous equations, the direction field is independent of t. Carry out the following analysis on the given equations. a. Find the equilibrium solutions. b. Sketch the direction field, for \(t \geq 0\). c. Sketch the solution curve that corresponds to the initial condition \(y(0)=1\). $$y^{\prime}(t)=\sin y$$
The reaction of certain chemical compounds can be modeled using a differential equation of the form \(y^{\prime}(t)=-k y^{n}(t),\) where \(y(t)\) is the concentration of the compound for \(t \geq 0, k>0\) is a constant that determines the speed of the reaction, and \(n\) is a positive integer called the order of the reaction. Assume that the initial concentration of the compound is \(y(0)=y_{0}>0\). a. Consider a first-order reaction \((n=1)\) and show that the solution of the initial value problem is \(y(t)=y_{0} e^{-k t}\). b. Consider a second-order reaction \((n=2)\) and show that the solution of the initial value problem is \(y(t)=\frac{y_{0}}{y_{0} k t+1}\). c. Let \(y_{0}=1\) and \(k=0.1 .\) Graph the first-order and secondorder solutions found in parts (a) and (b). Compare the two reactions.
Explain why or why not Determine whether the following statements are true and give an explanation or counterexample. a. The equation \(u^{\prime}(x)=\left(x^{2} u^{7}\right)^{-1}\) is separable. b. The general solution of the separable equation \(y^{\prime}(t)=\frac{t}{y^{7}+10 y^{4}}\) can be expressed explicitly with \(y\) in terms of \(t\) c. The general solution of the equation \(y y^{\prime}(x)=x e^{-y}\) can be found using integration by parts.
A fish hatchery has 500 fish at \(t=0\), when harvesting begins at a rate of \(b>0\) fish/year. The fish population is modeled by the initial value problem \(y^{\prime}(t)=0.01 y-b, y(0)=500,\) where \(t\) is measured in years. a. Find the fish population, for \(t \geq 0\), in terms of the harvesting rate \(b\) b. Graph the solution in the case that \(b=40\) fish/year. Describe the solution. c. Graph the solution in the case that \(b=60\) fish/year. Describe the solution.
What do you think about this solution?
We value your feedback to improve our textbook solutions.