Chapter 8: Problem 3
What is the general solution of the equation \(y^{\prime}(t)=-4 y+6 ?\)
Chapter 8: Problem 3
What is the general solution of the equation \(y^{\prime}(t)=-4 y+6 ?\)
All the tools & learning materials you need for study success - in one app.
Get started for freea. Show that for general positive values of \(R, V, C_{i},\) and \(m_{0},\) the solution of the initial value problem $$m^{\prime}(t)=-\frac{R}{V} m(t)+C_{i} R, \quad m(0)=m_{0}$$ is \(m(t)=\left(m_{0}-C_{i} V\right) e^{-R t / V}+C_{i} V\) b. Verify that \(m(0)=m_{0}\) c. Evaluate \(\lim m(t)\) and give a physical interpretation of the result. d. Suppose \(^{t} \vec{m}_{0}^{\infty}\) and \(V\) are fixed. Describe the effect of increasing \(R\) on the graph of the solution.
An object in free fall may be modeled by assuming that the only forces at work are the gravitational force and air resistance. By Newton's Second Law of Motion (mass \(\times\) acceleration \(=\) the sum of the external forces), the velocity of the object satisfies the differential equation $$\underbrace {m}_{\text {mass}}\quad \cdot \underbrace{v^{\prime}(t)}_{\text {acceleration }}=\underbrace {m g+f(v)}_{\text {external forces}}$$ where \(f\) is a function that models the air resistance (assuming the positive direction is downward). One common assumption (often used for motion in air) is that \(f(v)=-k v^{2},\) where \(k>0\) is a drag coefficient. a. Show that the equation can be written in the form \(v^{\prime}(t)=g-a v^{2},\) where \(a=k / m\) b. For what (positive) value of \(v\) is \(v^{\prime}(t)=0 ?\) (This equilibrium solution is called the terminal velocity.) c. Find the solution of this separable equation assuming \(v(0)=0\) and \(0 < v^{2} < g / a\) d. Graph the solution found in part (c) with \(g=9.8 \mathrm{m} / \mathrm{s}^{2}\) \(m=1,\) and \(k=0.1,\) and verify that the terminal velocity agrees with the value found in part (b).
A differential equation of the form \(y^{\prime}(t)=f(y)\) is said to be autonomous (the function \(f\) depends only on \(y\) ). The constant function \(y=y_{0}\) is an equilibrium solution of the equation provided \(f\left(y_{0}\right)=0\) (because then \(y^{\prime}(t)=0\) and the solution remains constant for all \(t\) ). Note that equilibrium solutions correspond to horizontal lines in the direction field. Note also that for autonomous equations, the direction field is independent of t. Carry out the following analysis on the given equations. a. Find the equilibrium solutions. b. Sketch the direction field, for \(t \geq 0\). c. Sketch the solution curve that corresponds to the initial condition \(y(0)=1\). $$y^{\prime}(t)=6-2 y$$
Solve the following initial value problems. When possible, give the solution as an explicit function of \(t\) $$y^{\prime}(t)=\frac{\cos ^{2} t}{2 y}, y(0)=-2$$
When an infected person is introduced into a closed and otherwise healthy community, the number of people who contract the disease (in the absence of any intervention) may be modeled by the logistic equation $$ \frac{d P}{d t}=k P\left(1-\frac{P}{A}\right), P(0)=P_{0} $$ where \(k\) is a positive infection rate, \(A\) is the number of people in the community, and \(P_{0}\) is the number of infected people at \(t=0\) The model also assumes no recovery. a. Find the solution of the initial value problem, for \(t \geq 0\), in terms of \(k, A,\) and \(P_{0}\) b. Graph the solution in the case that \(k=0.025, A=300,\) and \(P_{0}=1\) c. For a fixed value of \(k\) and \(A\), describe the long-term behavior of the solutions, for any \(P_{0}\) with \(0 < P_{0} < A\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.