Chapter 8: Problem 2
What is the general solution of the equation \(y^{\prime}(t)=3 y-12 ?\)
Chapter 8: Problem 2
What is the general solution of the equation \(y^{\prime}(t)=3 y-12 ?\)
All the tools & learning materials you need for study success - in one app.
Get started for freeWhen an infected person is introduced into a closed and otherwise healthy community, the number of people who contract the disease (in the absence of any intervention) may be modeled by the logistic equation $$ \frac{d P}{d t}=k P\left(1-\frac{P}{A}\right), P(0)=P_{0} $$ where \(k\) is a positive infection rate, \(A\) is the number of people in the community, and \(P_{0}\) is the number of infected people at \(t=0\) The model also assumes no recovery. a. Find the solution of the initial value problem, for \(t \geq 0\), in terms of \(k, A,\) and \(P_{0}\) b. Graph the solution in the case that \(k=0.025, A=300,\) and \(P_{0}=1\) c. For a fixed value of \(k\) and \(A\), describe the long-term behavior of the solutions, for any \(P_{0}\) with \(0 < P_{0} < A\)
Suppose an object with an initial temperature of \(T_{0}>0\) is put in surroundings with an ambient temperature of \(A\) where \(A<\frac{T_{0}}{2}\). Let \(t_{1 / 2}\) be the time required for the object to cool to \(\frac{T_{0}}{2}\) a. Show that \(t_{1 / 2}=-\frac{1}{k} \ln \left[\frac{T_{0}-2 A}{2\left(T_{0}-A\right)}\right]\) b. Does \(t_{1 / 2}\) increase or decrease as \(k\) increases? Explain. c. Why is the condition \(A<\frac{T_{0}}{2}\) needed?
Solve the following initial value problems and leave the solution in implicit form. Use graphing software to plot the solution. If the implicit solution describes more than one curve, be sure to indicate which curve corresponds to the solution of the initial value problem. $$y^{\prime}(x)=\sqrt{\frac{x+1}{y+4}}, y(3)=5$$
A differential equation of the form \(y^{\prime}(t)=f(y)\) is said to be autonomous (the function \(f\) depends only on \(y\) ). The constant function \(y=y_{0}\) is an equilibrium solution of the equation provided \(f\left(y_{0}\right)=0\) (because then \(y^{\prime}(t)=0\) and the solution remains constant for all \(t\) ). Note that equilibrium solutions correspond to horizontal lines in the direction field. Note also that for autonomous equations, the direction field is independent of t. Carry out the following analysis on the given equations. a. Find the equilibrium solutions. b. Sketch the direction field, for \(t \geq 0\). c. Sketch the solution curve that corresponds to the initial condition \(y(0)=1\). $$y^{\prime}(t)=6-2 y$$
The following initial value problems model the payoff of a loan. In each case, solve the initial value problem, for \(t \geq 0,\) graph the solution, and determine the first month in which the loan balance is zero. $$B^{\prime}(t)=0.004 B-800, B(0)=40,000$$
What do you think about this solution?
We value your feedback to improve our textbook solutions.