Chapter 8: Problem 2
Is \(y^{\prime \prime}(t)+9 y(t)=10\) linear or nonlinear?
Chapter 8: Problem 2
Is \(y^{\prime \prime}(t)+9 y(t)=10\) linear or nonlinear?
All the tools & learning materials you need for study success - in one app.
Get started for freeDetermine whether the following equations are separable. If so, solve the initial value problem. $$\sec x y^{\prime}(x)=y^{3}, y(0)=3$$
Consider the general first-order linear equation \(y^{\prime}(t)+a(t) y(t)=f(t) .\) This equation can be solved, in principle, by defining the integrating factor \(p(t)=\exp \left(\int a(t) d t\right) .\) Here is how the integrating factor works. Multiply both sides of the equation by \(p\) (which is always positive) and show that the left side becomes an exact derivative. Therefore, the equation becomes $$p(t)\left(y^{\prime}(t)+a(t) y(t)\right)=\frac{d}{d t}(p(t) y(t))=p(t) f(t).$$ Now integrate both sides of the equation with respect to t to obtain the solution. Use this method to solve the following initial value problems. Begin by computing the required integrating factor. $$y^{\prime}(t)+\frac{3}{t} y(t)=1-2 t, \quad y(2)=0$$
Solve the following initial value problems and leave the solution in implicit form. Use graphing software to plot the solution. If the implicit solution describes more than one curve, be sure to indicate which curve corresponds to the solution of the initial value problem. $$y^{\prime}(x)=\frac{1+x}{2-y}, y(1)=1$$
A differential equation of the form \(y^{\prime}(t)=f(y)\) is said to be autonomous (the function \(f\) depends only on \(y\) ). The constant function \(y=y_{0}\) is an equilibrium solution of the equation provided \(f\left(y_{0}\right)=0\) (because then \(y^{\prime}(t)=0\) and the solution remains constant for all \(t\) ). Note that equilibrium solutions correspond to horizontal lines in the direction field. Note also that for autonomous equations, the direction field is independent of t. Carry out the following analysis on the given equations. a. Find the equilibrium solutions. b. Sketch the direction field, for \(t \geq 0\). c. Sketch the solution curve that corresponds to the initial condition \(y(0)=1\). $$y^{\prime}(t)=y(2-y)$$
Determine whether the following equations are separable. If so, solve the initial value problem. $$y^{\prime}(t)=\cos ^{2} y, y(1)=\frac{\pi}{4}$$
What do you think about this solution?
We value your feedback to improve our textbook solutions.