Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Is the equation \(t^{2} y^{\prime}(t)=\frac{t+4}{y^{2}}\) separable?

Short Answer

Expert verified
Answer: Yes, the given equation is separable.

Step by step solution

01

Rewrite the equation

First, let's rewrite the given equation as a product of two functions: $$t^{2} y^{\prime}(t) = \frac{t+4}{y^{2}}$$
02

Separate the functions

Let's check if we can separate the functions (one depending on t and the other on y): $$y^2 y^{\prime}(t)=\frac{t+4}{t^2}$$ Now, let's rewrite it in this form: $$y^2 dy = \frac{(t + 4) dt}{t^2}$$ Now we have successfully separated the functions. The function on the left depends only on y and the function on the right depends only on t.
03

Conclusion

Yes, the given equation is separable. We have written it in the form: $$y^2 dy = \frac{(t + 4) dt}{t^2}$$ which shows that it can be separated into two functions, one depending on y and the other depending on t.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Solve the following initial value problems and leave the solution in implicit form. Use graphing software to plot the solution. If the implicit solution describes more than one curve, be sure to indicate which curve corresponds to the solution of the initial value problem. $$z^{\prime}(x)=\frac{z^{2}+4}{x^{2}+16}, z(4)=2$$

Consider the first-order initial value problem \(y^{\prime}(t)=a y+b, y(0)=A,\) for \(t \geq 0,\) where \(a, b,\) and \(A\) are real numbers. a. Explain why \(y=-b / a\) is an equilibrium solution and corresponds to a horizontal line in the direction field. b. Draw a representative direction field in the case that \(a>0\) Show that if \(A>-b / a,\) then the solution increases for \(t \geq 0\) and if \(A<-b / a,\) then the solution decreases for \(t \geq 0\). c. Draw a representative direction field in the case that \(a<0\) Show that if \(A>-b / a,\) then the solution decreases for \(t \geq 0\) and if \(A<-b / a,\) then the solution increases for \(t \geq 0\).

Verify that the function $$M(t)=K\left(\frac{M_{0}}{K}\right)^{\exp (-r t)}$$ satisfies the properties \(M(0)=M_{0}\) and \(\lim _{t \rightarrow \infty} M(t)=K\).

Determine whether the following equations are separable. If so, solve the initial value problem. $$\frac{d y}{d x}=e^{x-y}, y(0)=\ln 3$$

Consider the differential equation \(y^{\prime}(t)=\frac{y(y+1)}{t(t+2)}\) and carry out the following analysis. a. Show that the general solution of the equation can be written in the form $$ y(t)=\frac{\sqrt{t}}{C \sqrt{t+2}-\sqrt{t}} $$ b. Now consider the initial value problem \(y(1)=A,\) where \(A\) is a real number. Show that the solution of the initial value problem is $$ y(t)=\frac{\sqrt{t}}{\left(\frac{1+A}{\sqrt{3} A}\right) \sqrt{t+2}-\sqrt{t}} $$ c. Find and graph the solution that satisfies the initial condition \(y(1)=1\) d. Describe the behavior of the solution in part (c) as \(t\) increases. e. Find and graph the solution that satisfies the initial condition \(y(1)=2\) f. Describe the behavior of the solution in part (e) as \(t\) increases. g. In the cases in which the solution is bounded for \(t>0,\) what is the value of \(\lim _{t \rightarrow \infty} y(t) ?\)

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free