Chapter 8: Problem 14
Solve the following initial value problems. $$u^{\prime}(x)=2 u+6, u(1)=6$$
Chapter 8: Problem 14
Solve the following initial value problems. $$u^{\prime}(x)=2 u+6, u(1)=6$$
All the tools & learning materials you need for study success - in one app.
Get started for freeConsider a loan repayment plan described by the initial value problem $$B^{\prime}(t)=0.03 B-600, \quad B(0)=40,000$$ where the amount borrowed is \(B(0)=\$ 40,000,\) the monthly payments are \(\$ 600,\) and \(B(t)\) is the unpaid balance in the loan. a. Find the solution of the initial value problem and explain why \(B\) is an increasing function. b. What is the most that you can borrow under the terms of this loan without going further into debt each month? c. Now consider the more general loan repayment plan described by the initial value problem $$B^{\prime}(t)=r B-m, \quad B(0)=B_{0}$$ where \(r>0\) reflects the interest rate, \(m>0\) is the monthly payment, and \(B_{0}>0\) is the amount borrowed. In terms of \(m\) and \(r,\) what is the maximum amount \(B_{0}\) that can be borrowed without going further into debt each month?
Solve the following initial value problems. When possible, give the solution as an explicit function of \(t\) $$y^{\prime}(t)=\frac{\cos ^{2} t}{2 y}, y(0)=-2$$
a. Show that for general positive values of \(R, V, C_{i},\) and \(m_{0},\) the solution of the initial value problem $$m^{\prime}(t)=-\frac{R}{V} m(t)+C_{i} R, \quad m(0)=m_{0}$$ is \(m(t)=\left(m_{0}-C_{i} V\right) e^{-R t / V}+C_{i} V\) b. Verify that \(m(0)=m_{0}\) c. Evaluate \(\lim m(t)\) and give a physical interpretation of the result. d. Suppose \(^{t} \vec{m}_{0}^{\infty}\) and \(V\) are fixed. Describe the effect of increasing \(R\) on the graph of the solution.
Determine whether the following equations are separable. If so, solve the initial value problem. $$\sec x y^{\prime}(x)=y^{3}, y(0)=3$$
A differential equation of the form \(y^{\prime}(t)=f(y)\) is said to be autonomous (the function \(f\) depends only on \(y\) ). The constant function \(y=y_{0}\) is an equilibrium solution of the equation provided \(f\left(y_{0}\right)=0\) (because then \(y^{\prime}(t)=0\) and the solution remains constant for all \(t\) ). Note that equilibrium solutions correspond to horizontal lines in the direction field. Note also that for autonomous equations, the direction field is independent of t. Carry out the following analysis on the given equations. a. Find the equilibrium solutions. b. Sketch the direction field, for \(t \geq 0\). c. Sketch the solution curve that corresponds to the initial condition \(y(0)=1\). $$y^{\prime}(t)=y(y-3)(y+2)$$
What do you think about this solution?
We value your feedback to improve our textbook solutions.