Chapter 8: Problem 13
Solve the following initial value problems. $$y^{\prime}(t)-2 y=8, y(0)=0$$
Chapter 8: Problem 13
Solve the following initial value problems. $$y^{\prime}(t)-2 y=8, y(0)=0$$
All the tools & learning materials you need for study success - in one app.
Get started for freeExplain why or why not Determine whether the following statements are true and give an explanation or counterexample. a. The equation \(u^{\prime}(x)=\left(x^{2} u^{7}\right)^{-1}\) is separable. b. The general solution of the separable equation \(y^{\prime}(t)=\frac{t}{y^{7}+10 y^{4}}\) can be expressed explicitly with \(y\) in terms of \(t\) c. The general solution of the equation \(y y^{\prime}(x)=x e^{-y}\) can be found using integration by parts.
A differential equation of the form \(y^{\prime}(t)=f(y)\) is said to be autonomous (the function \(f\) depends only on \(y\) ). The constant function \(y=y_{0}\) is an equilibrium solution of the equation provided \(f\left(y_{0}\right)=0\) (because then \(y^{\prime}(t)=0\) and the solution remains constant for all \(t\) ). Note that equilibrium solutions correspond to horizontal lines in the direction field. Note also that for autonomous equations, the direction field is independent of t. Carry out the following analysis on the given equations. a. Find the equilibrium solutions. b. Sketch the direction field, for \(t \geq 0\). c. Sketch the solution curve that corresponds to the initial condition \(y(0)=1\). $$y^{\prime}(t)=6-2 y$$
Two curves are orthogonal to each other if their tangent lines are perpendicular at each point of intersection. A family of curves forms orthogonal trajectories with another family of curves if each curve in one family is orthogonal to each curve in the other family. Use the following steps to find the orthogonal trajectories of the family of ellipses \(2 x^{2}+y^{2}=a^{2}\) a. Apply implicit differentiation to \(2 x^{2}+y^{2}=a^{2}\) to show that $$ \frac{d y}{d x}=\frac{-2 x}{y} $$ b. The family of trajectories orthogonal to \(2 x^{2}+y^{2}=a^{2}\) satisfies the differential equation \(\frac{d y}{d x}=\frac{y}{2 x} .\) Why? c. Solve the differential equation in part (b) to verify that \(y^{2}=e^{C}|x|\) and then explain why it follows that \(y^{2}=k x\) Therefore, the family of parabolas \(y^{2}=k x\) forms the orthogonal trajectories of the family of ellipses \(2 x^{2}+y^{2}=a^{2}\)
Write a logistic equation with the following parameter values. Then solve the initial value problem and graph the solution. Let \(r\) be the natural growth rate, \(K\) the carrying capacity, and \(P_{0}\) the initial population. $$r=0.2, K=300, P_{0}=50$$
Make a sketch of the population function (as a function of time) that results from the following growth rate functions. Assume the population at time \(t=0\) begins at some positive value.
What do you think about this solution?
We value your feedback to improve our textbook solutions.