Chapter 8: Problem 11
Solve the following initial value problems. $$y^{\prime}(t)=3 y-6, y(0)=9$$
Chapter 8: Problem 11
Solve the following initial value problems. $$y^{\prime}(t)=3 y-6, y(0)=9$$
All the tools & learning materials you need for study success - in one app.
Get started for freeSolve the differential equation for Newton's Law of Cooling to find the temperature in the following cases. Then answer any additional questions. A cup of coffee has a temperature of \(90^{\circ} \mathrm{C}\) when it is poured and allowed to cool in a room with a temperature of \(25^{\circ} \mathrm{C}\). One minute after the coffee is poured, its temperature is \(85^{\circ} \mathrm{C}\). How long must you wait until the coffee is cool enough to drink, say \(30^{\circ} \mathrm{C} ?\)
Determine whether the following equations are separable. If so, solve the initial value problem. $$y^{\prime}(t)=e^{t y}, y(0)=1$$
Solve the following initial value problems and leave the solution in implicit form. Use graphing software to plot the solution. If the implicit solution describes more than one curve, be sure to indicate which curve corresponds to the solution of the initial value problem. $$z^{\prime}(x)=\frac{z^{2}+4}{x^{2}+16}, z(4)=2$$
Suppose the solution of the initial value problem \(y^{\prime}(t)=f(t, y), y(a)=A\) is to be approximated on the interval \([a, b]\). a. If \(N+1\) grid points are used (including the endpoints), what is the time step \(\Delta t ?\) b. Write the first step of Euler's method to compute \(u_{1}\). c. Write the general step of Euler's method that applies, for \(k=0,1, \ldots, N-1\).
Widely used models for population growth involve the logistic equation \(P^{\prime}(t)=r P\left(1-\frac{P}{K}\right),\) where \(P(t)\) is the population, for \(t \geq 0,\) and \(r>0\) and \(K>0\) are given constants. a. Verify by substitution that the general solution of the equation is \(P(t)=\frac{K}{1+C e^{-n}},\) where \(C\) is an arbitrary constant. b. Find that value of \(C\) that corresponds to the initial condition \(P(0)=50\). c. Graph the solution for \(P(0)=50, r=0.1,\) and \(K=300\). d. Find \(\lim _{t \rightarrow \infty} P(t)\) and check that the result is consistent with the graph in part (c).
What do you think about this solution?
We value your feedback to improve our textbook solutions.