Chapter 7: Problem 96
Compute \(\int_{0}^{1} \ln x d x\) using integration by parts. Then explain why \(-\int_{0}^{\infty} e^{-x} d x\) (an easier integral) gives the same result.
Chapter 7: Problem 96
Compute \(\int_{0}^{1} \ln x d x\) using integration by parts. Then explain why \(-\int_{0}^{\infty} e^{-x} d x\) (an easier integral) gives the same result.
All the tools & learning materials you need for study success - in one app.
Get started for freeRefer to the summary box (Partial Fraction Decompositions) and evaluate the following integrals. $$\int \frac{x}{(x-1)\left(x^{2}+2 x+2\right)^{2}} d x$$
The following integrals require a preliminary step such as long division or a change of variables before using partial fractions. Evaluate these integrals. $$\int \frac{d t}{2+e^{-t}}$$
A long, straight wire of length \(2 L\) on the \(y\) -axis carries a current \(I\). According to the Biot-Savart Law, the magnitude of the magnetic field due to the current at a point \((a, 0)\) is given by $$B(a)=\frac{\mu_{0} I}{4 \pi} \int_{-L}^{L} \frac{\sin \theta}{r^{2}} d y$$ where \(\mu_{0}\) is a physical constant, \(a>0,\) and \(\theta, r,\) and \(y\) are related as shown in the figure. a. Show that the magnitude of the magnetic field at \((a, 0)\) is $$B(a)=\frac{\mu_{0} I L}{2 \pi a \sqrt{a^{2}+L^{2}}}$$ b. What is the magnitude of the magnetic field at \((a, 0)\) due to an infinitely long wire \((L \rightarrow \infty) ?\)
Graph the function \(f(x)=\frac{1}{x \sqrt{x^{2}-36}}\) on its domain. Then find the area of the region \(R_{1}\) bounded by the curve and the \(x\) -axis on \([-12,-12 / \sqrt{3}]\) and the area of the region \(R_{2}\) bounded by the curve and the \(x\) -axis on \([12 / \sqrt{3}, 12] .\) Be sure your results are consistent with the graph.
Graph the function \(f(x)=\frac{\sqrt{x^{2}-9}}{x}\) and consider the region bounded by the curve and the \(x\) -axis on \([-6,-3] .\) Then evaluate \(\int_{-6}^{-3} \frac{\sqrt{x^{2}-9}}{x} d x .\) Be sure the result is consistent with the graph.
What do you think about this solution?
We value your feedback to improve our textbook solutions.