Chapter 7: Problem 88
An integrand with trigonometric functions in the numerator and denominator can often be converted to a rational integrand using the substitution \(u=\tan (x / 2)\) or \(x=2 \tan ^{-1} u .\) The following relations are used in making this change of variables. $$A: d x=\frac{2}{1+u^{2}} d u \quad B: \sin x=\frac{2 u}{1+u^{2}} \quad C: \cos x=\frac{1-u^{2}}{1+u^{2}}$$ Verify relation \(A\) by differentiating \(x=2 \tan ^{-1} u\). Verify relations \(B\) and \(C\) using a right-triangle diagram and the double-angle formulas $$\sin x=2 \sin \left(\frac{x}{2}\right) \cos \left(\frac{x}{2}\right) \text { and } \cos x=2 \cos ^{2}\left(\frac{x}{2}\right)-1$$
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.