Chapter 7: Problem 86
Refer to the summary box (Partial Fraction Decompositions) and evaluate the following integrals. $$\int \frac{x^{3}+1}{x\left(x^{2}+x+1\right)^{2}} d x$$
Chapter 7: Problem 86
Refer to the summary box (Partial Fraction Decompositions) and evaluate the following integrals. $$\int \frac{x^{3}+1}{x\left(x^{2}+x+1\right)^{2}} d x$$
All the tools & learning materials you need for study success - in one app.
Get started for freeEvaluate the following integrals or state that they diverge. $$\int_{0}^{\pi / 2} \sec \theta d \theta$$
A long, straight wire of length \(2 L\) on the \(y\) -axis carries a current \(I\). According to the Biot-Savart Law, the magnitude of the magnetic field due to the current at a point \((a, 0)\) is given by $$B(a)=\frac{\mu_{0} I}{4 \pi} \int_{-L}^{L} \frac{\sin \theta}{r^{2}} d y$$ where \(\mu_{0}\) is a physical constant, \(a>0,\) and \(\theta, r,\) and \(y\) are related as shown in the figure. a. Show that the magnitude of the magnetic field at \((a, 0)\) is $$B(a)=\frac{\mu_{0} I L}{2 \pi a \sqrt{a^{2}+L^{2}}}$$ b. What is the magnitude of the magnetic field at \((a, 0)\) due to an infinitely long wire \((L \rightarrow \infty) ?\)
An integrand with trigonometric functions in the numerator and denominator can often be converted to a rational integrand using the substitution \(u=\tan (x / 2)\) or \(x=2 \tan ^{-1} u .\) The following relations are used in making this change of variables. $$A: d x=\frac{2}{1+u^{2}} d u \quad B: \sin x=\frac{2 u}{1+u^{2}} \quad C: \cos x=\frac{1-u^{2}}{1+u^{2}}$$ $$\text { Evaluate } \int \frac{d x}{1+\sin x}$$
Find the volume of the following solids. The region bounded by \(y=\frac{1}{\sqrt{4-x^{2}}}, y=0, x=-1,\) ar \(x=1\) is revolved about the \(x\) -axis.
By reduction formula 4 in Section 3 $$\int \sec ^{3} u d u=\frac{1}{2}(\sec u \tan u+\ln |\sec u+\tan u|)+C$$ Graph the following functions and find the area under the curve on the given interval. $$f(x)=\left(x^{2}-25\right)^{1 / 2},[5,10]$$
What do you think about this solution?
We value your feedback to improve our textbook solutions.