Chapter 7: Problem 81
Use the indicated substitution to convert the given integral to an integral of a rational function. Evaluate the resulting integral. $$\int \frac{d x}{\sqrt{1+\sqrt{x}}} ; x=\left(u^{2}-1\right)^{2}$$
Chapter 7: Problem 81
Use the indicated substitution to convert the given integral to an integral of a rational function. Evaluate the resulting integral. $$\int \frac{d x}{\sqrt{1+\sqrt{x}}} ; x=\left(u^{2}-1\right)^{2}$$
All the tools & learning materials you need for study success - in one app.
Get started for freeChallenge Show that with the change of variables \(u=\sqrt{\tan x}\) the integral \(\int \sqrt{\tan x} d x\) can be converted to an integral amenabl to partial fractions. Evaluate \(\int_{0}^{\pi / 4} \sqrt{\tan x} d x\)
The following integrals require a preliminary step such as long division or a change of variables before using partial fractions. Evaluate these integrals. $$\int \frac{x^{4}+1}{x^{3}+9 x} d x$$
Suppose that the rate at which a company extracts oil is given by \(r(t)=r_{0} e^{-k t},\) where \(r_{0}=10^{7}\) barrels \(/ \mathrm{yr}\) and \(k=0.005 \mathrm{yr}^{-1} .\) Suppose also the estimate of the total oil reserve is \(2 \times 10^{9}\) barrels. If the extraction continues indefinitely, will the reserve be exhausted?
An integrand with trigonometric functions in the numerator and denominator can often be converted to a rational integrand using the substitution \(u=\tan (x / 2)\) or \(x=2 \tan ^{-1} u .\) The following relations are used in making this change of variables. $$A: d x=\frac{2}{1+u^{2}} d u \quad B: \sin x=\frac{2 u}{1+u^{2}} \quad C: \cos x=\frac{1-u^{2}}{1+u^{2}}$$ $$\text { Evaluate } \int \frac{d \theta}{\cos \theta-\sin \theta}$$
Let \(R\) be the region between the curves \(y=e^{-c x}\) and \(y=-e^{-c x}\) on the interval \([a, \infty),\) where \(a \geq 0\) and \(c \geq 0 .\) The center of mass of \(R\) is located at \((\bar{x}, 0)\) where \(\bar{x}=\frac{\int_{a}^{\infty} x e^{-c x} d x}{\int_{a}^{\infty} e^{-c x} d x} .\) (The profile of the Eiffel Tower is modeled by the two exponential curves.) a. For \(a=0\) and \(c=2,\) sketch the curves that define \(R\) and find the center of mass of \(R\). Indicate the location of the center of mass. b. With \(a=0\) and \(c=2,\) find equations of the lines tangent to the curves at the points corresponding to \(x=0.\) c. Show that the tangent lines intersect at the center of mass. d. Show that this same property holds for any \(a \geq 0\) and any \(c>0 ;\) that is, the tangent lines to the curves \(y=\pm e^{-c x}\) at \(x=a\) intersect at the center of mass of \(R\) (Source: P. Weidman and I. Pinelis, Comptes Rendu, Mechanique \(332(2004): 571-584 .)\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.