Chapter 7: Problem 79
Find the volume of the solid torus formed when the circle of radius 4 centered at (0,6) is revolved about the \(x\) -axis.
Chapter 7: Problem 79
Find the volume of the solid torus formed when the circle of radius 4 centered at (0,6) is revolved about the \(x\) -axis.
All the tools & learning materials you need for study success - in one app.
Get started for freeCircumference of a circle Use calculus to find the circumference of a circle with radius \(a.\)
When is the volume finite? Let \(R\) be the region bounded by the graph of
\(f(x)=x^{-p}\) and the \(x\) -axis, for \(0
Refer to the summary box (Partial Fraction Decompositions) and evaluate the following integrals. $$\int \frac{x}{(x-1)\left(x^{2}+2 x+2\right)^{2}} d x$$
Use symmetry to evaluate the following integrals. a. \(\int_{-\infty}^{\infty} e^{|x|} d x \quad\) b. \(\int_{-\infty}^{\infty} \frac{x^{3}}{1+x^{8}} d x\)
Many methods needed Show that \(\int_{0}^{\infty} \frac{\sqrt{x} \ln x}{(1+x)^{2}} d x=\pi\) in the following steps. a. Integrate by parts with \(u=\sqrt{x} \ln x.\) b. Change variables by letting \(y=1 / x.\) c. Show that \(\int_{0}^{1} \frac{\ln x}{\sqrt{x}(1+x)} d x=-\int_{1}^{\infty} \frac{\ln x}{\sqrt{x}(1+x)} d x\) and conclude that \(\int_{0}^{\infty} \frac{\ln x}{\sqrt{x}(1+x)} d x=0.\) d. Evaluate the remaining integral using the change of variables \(z=\sqrt{x}\) (Source: Mathematics Magazine 59, No. 1 (February 1986): 49).
What do you think about this solution?
We value your feedback to improve our textbook solutions.