Chapter 7: Problem 77
Use the indicated substitution to convert the given integral to an integral of a rational function. Evaluate the resulting integral. $$\int \frac{d x}{\sqrt[4]{x+2}+1} ; x+2=u^{4}$$
Chapter 7: Problem 77
Use the indicated substitution to convert the given integral to an integral of a rational function. Evaluate the resulting integral. $$\int \frac{d x}{\sqrt[4]{x+2}+1} ; x+2=u^{4}$$
All the tools & learning materials you need for study success - in one app.
Get started for freeFind the volume of the described solid of revolution or state that it does not exist. The region bounded by \(f(x)=(x+1)^{-3 / 2}\) and the \(y\) -axis on the interval (-1,1] is revolved about the line \(x=-1.\)
Evaluate the following integrals. $$\int \frac{1}{\left(y^{2}+1\right)\left(y^{2}+2\right)} d y$$
Evaluate the following integrals or state that they diverge. $$\int_{0}^{\pi / 2} \sec \theta d \theta$$
Use the following three identities to evaluate the given integrals. $$\begin{aligned}&\sin m x \sin n x=\frac{1}{2}[\cos ((m-n) x)-\cos ((m+n) x)]\\\&\sin m x \cos n x=\frac{1}{2}[\sin ((m-n) x)+\sin ((m+n) x)]\\\&\cos m x \cos n x=\frac{1}{2}[\cos ((m-n) x)+\cos ((m+n) x)]\end{aligned}$$ $$\int \sin 3 x \sin 2 x d x$$
On the interval \([0,2],\) the graphs of \(f(x)=x^{2} / 3\) and \(g(x)=x^{2}\left(9-x^{2}\right)^{-1 / 2}\) have similar shapes. a. Find the area of the region bounded by the graph of \(f\) and the \(x\) -axis on the interval [0,2] b. Find the area of the region bounded by the graph of \(g\) and the \(x\) -axis on the interval [0,2] c. Which region has the greater area?
What do you think about this solution?
We value your feedback to improve our textbook solutions.