Chapter 7: Problem 77
Evaluate the following integrals. Consider completing the square. $$\int_{2+\sqrt{2}}^{4} \frac{d x}{\sqrt{(x-1)(x-3)}}$$
Chapter 7: Problem 77
Evaluate the following integrals. Consider completing the square. $$\int_{2+\sqrt{2}}^{4} \frac{d x}{\sqrt{(x-1)(x-3)}}$$
All the tools & learning materials you need for study success - in one app.
Get started for freeRecall that the substitution \(x=a \sec \theta\) implies that \(x \geq a\) (in which case \(0 \leq \theta<\pi / 2\) and \(\tan \theta \geq 0\) ) or \(x \leq-a\) (in which case \(\pi / 2<\theta \leq \pi\) and \(\tan \theta \leq 0\) ). Evaluate for \(\int \frac{\sqrt{x^{2}-1}}{x^{3}} d x,\) for \(x>1\) and for \(x<-1\)
Find the volume of the described solid of revolution or state that it does not exist. The region bounded by \(f(x)=\left(x^{2}-1\right)^{-1 / 4}\) and the \(x\) -axis on the interval (1,2] is revolved about the \(y\) -axis.
Prove the following orthogonality relations (which are used to generate Fourier series). Assume \(m\) and \(n\) are integers with \(m \neq n\) a. \(\int_{0}^{\pi} \sin m x \sin n x d x=0\) b. \(\int_{0}^{\pi} \cos m x \cos n x d x=0\) c. \(\int_{0}^{\pi} \sin m x \cos n x d x=0\)
An integrand with trigonometric functions in the numerator and denominator can often be converted to a rational integrand using the substitution \(u=\tan (x / 2)\) or \(x=2 \tan ^{-1} u .\) The following relations are used in making this change of variables. $$A: d x=\frac{2}{1+u^{2}} d u \quad B: \sin x=\frac{2 u}{1+u^{2}} \quad C: \cos x=\frac{1-u^{2}}{1+u^{2}}$$ $$\text { Evaluate } \int \frac{d x}{1+\sin x+\cos x}$$
An integrand with trigonometric functions in the numerator and denominator can often be converted to a rational integrand using the substitution \(u=\tan (x / 2)\) or \(x=2 \tan ^{-1} u .\) The following relations are used in making this change of variables. $$A: d x=\frac{2}{1+u^{2}} d u \quad B: \sin x=\frac{2 u}{1+u^{2}} \quad C: \cos x=\frac{1-u^{2}}{1+u^{2}}$$ $$\text { Evaluate } \int \frac{d x}{2+\cos x}$$
What do you think about this solution?
We value your feedback to improve our textbook solutions.