Chapter 7: Problem 75
Let \(I_{n}=\int x^{n} e^{-x^{2}} d x,\) where \(n\) is a nonnegative integer. a. \(I_{0}=\int e^{-x^{2}} d x\) cannot be expressed in terms of elementary functions. Evaluate \(I_{1}\). b. Use integration by parts to evaluate \(I_{3}\). c. Use integration by parts and the result of part (b) to evaluate \(I_{5}\). d. Show that, in general, if \(n\) is odd, then \(I_{n}=-\frac{1}{2} e^{-x^{2}} p_{n-1}(x)\) where \(p_{n-1}\) is a polynomial of degree \(n-1\). e. Argue that if \(n\) is even, then \(I_{n}\) cannot be expressed in terms of elementary functions.
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.