Chapter 7: Problem 73
Let \(a>0\) and let \(R\) be the region bounded by the graph of \(y=e^{-a x}\) and the \(x\) -axis on the interval \([b, \infty).\) a. Find \(A(a, b),\) the area of \(R\) as a function of \(a\) and \(b\) b. Find the relationship \(b=g(a)\) such that \(A(a, b)=2\) c. What is the minimum value of \(b\) (call it \(b^{*}\) ) such that when \(b>b^{*}, A(a, b)=2\) for some value of \(a>0 ?\)
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.