Chapter 7: Problem 73
a. Graph the functions \(f_{1}(x)=\sin ^{2} x\) and \(f_{2}(x)=\sin ^{2} 2 x\) on the interval \([0, \pi] .\) Find the area under these curves on \([0, \pi]\) b. Graph a few more of the functions \(f_{n}(x)=\sin ^{2} n x\) on the interval \([0, \pi],\) where \(n\) is a positive integer. Find the area under these curves on \([0, \pi] .\) Comment on your observations. c. Prove that \(\int_{0}^{\pi} \sin ^{2}(n x) d x\) has the same value for all positive integers \(n\) d. Does the conclusion of part (c) hold if sine is replaced by cosine? e. Repeat parts (a), (b), and (c) with \(\sin ^{2} x\) replaced by \(\sin ^{4} x\) Comment on your observations. f. Challenge problem: Show that, for \(m=1,2,3, \ldots\) $$\int_{0}^{\pi} \sin ^{2 m} x d x=\int_{0}^{\pi} \cos ^{2 m} x d x=\pi \cdot \frac{1 \cdot 3 \cdot 5 \cdots(2 m-1)}{2 \cdot 4 \cdot 6 \cdots 2 m}$$
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.