Chapter 7: Problem 68
Use integration by parts to evaluate the following integrals. $$\int_{1}^{\infty} \frac{\ln x}{x^{2}} d x$$
Chapter 7: Problem 68
Use integration by parts to evaluate the following integrals. $$\int_{1}^{\infty} \frac{\ln x}{x^{2}} d x$$
All the tools & learning materials you need for study success - in one app.
Get started for freeUse numerical methods or a calculator to approximate the following integrals as closely as possible. $$\int_{0}^{\infty} \frac{\sin ^{2} x}{x^{2}} d x=\frac{\pi}{2}$$
When is the volume finite? Let \(R\) be the region bounded by the graph of \(f(x)=x^{-p}\) and the \(x\) -axis, for \(x \geq 1.\) a. Let \(S\) be the solid generated when \(R\) is revolved about the \(x\) -axis. For what values of \(p\) is the volume of \(S\) finite? b. Let \(S\) be the solid generated when \(R\) is revolved about the \(y\) -axis. For what values of \(p\) is the volume of \(S\) finite?
Decaying oscillations Let \(a>0\) and \(b\) be real numbers. Use integration to confirm the following identities. a. \(\int_{0}^{\infty} e^{-a x} \cos b x d x=\frac{a}{a^{2}+b^{2}}\) b. \(\int_{0}^{\infty} e^{-a x} \sin b x d x=\frac{b}{a^{2}+b^{2}}\)
The following integrals require a preliminary step such as long division or a change of variables before using partial fractions. Evaluate these integrals. $$\int \frac{d x}{e^{x}+e^{2 x}}$$
Refer to the summary box (Partial Fraction Decompositions) and evaluate the following integrals. $$\int \frac{2}{x\left(x^{2}+1\right)^{2}} d x$$
What do you think about this solution?
We value your feedback to improve our textbook solutions.