Chapter 7: Problem 67
Use the reduction formulas in a table of integrals to evaluate the following integrals. $$\int x^{3} e^{2 x} d x$$
Chapter 7: Problem 67
Use the reduction formulas in a table of integrals to evaluate the following integrals. $$\int x^{3} e^{2 x} d x$$
All the tools & learning materials you need for study success - in one app.
Get started for freeThe following integrals require a preliminary step such as long division or a change of variables before using partial fractions. Evaluate these integrals. $$\int \frac{\sec \theta}{1+\sin \theta} d \theta$$
Refer to Theorem 2 and let \(f(x)=\sin e^{x}\) a. Find a Trapezoid Rule approximation to \(\int_{0}^{1} \sin \left(e^{x}\right) d x\) using \(n=40\) subintervals. b. Calculate \(f^{\prime \prime}(x)\) c. Explain why \(\left|f^{\prime \prime}(x)\right|<6\) on \([0,1],\) given that \(e<3\). (Hint: Graph \(\left.f^{\prime \prime} .\right)\) d. Find an upper bound on the absolute error in the estimate found in part (a) using Theorem 2.
The following integrals require a preliminary step such as long division or a change of variables before using partial fractions. Evaluate these integrals. $$\int \frac{d x}{1+e^{x}}$$
On the interval \([0,2],\) the graphs of \(f(x)=x^{2} / 3\) and \(g(x)=x^{2}\left(9-x^{2}\right)^{-1 / 2}\) have similar shapes. a. Find the area of the region bounded by the graph of \(f\) and the \(x\) -axis on the interval [0,2] b. Find the area of the region bounded by the graph of \(g\) and the \(x\) -axis on the interval [0,2] c. Which region has the greater area?
Use the Trapezoid Rule (Section 7 ) to approximate \(\int_{0}^{R} e^{-x^{2}} d x\) with \(R=2,4,\) and 8. For each value of \(R\), take \(n=4,8,16,\) and \(32,\) and compare approximations with successive values of \(n .\) Use these approximations to approximate \(I=\int_{0}^{\infty} e^{-x^{2}} d x.\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.