Chapter 7: Problem 67
Use integration by parts to evaluate the following integrals. $$\int_{0}^{1} x \ln x d x$$
Chapter 7: Problem 67
Use integration by parts to evaluate the following integrals. $$\int_{0}^{1} x \ln x d x$$
All the tools & learning materials you need for study success - in one app.
Get started for freeFind the volume of the described solid of revolution or state that it does not exist. The region bounded by \(f(x)=(x+1)^{-3 / 2}\) and the \(y\) -axis on the interval (-1,1] is revolved about the line \(x=-1.\)
Refer to the summary box (Partial Fraction Decompositions) and evaluate the following integrals. $$\int \frac{2}{x\left(x^{2}+1\right)^{2}} d x$$
Prove the following orthogonality relations (which are used to generate Fourier series). Assume \(m\) and \(n\) are integers with \(m \neq n\) a. \(\int_{0}^{\pi} \sin m x \sin n x d x=0\) b. \(\int_{0}^{\pi} \cos m x \cos n x d x=0\) c. \(\int_{0}^{\pi} \sin m x \cos n x d x=0\)
An integrand with trigonometric functions in the numerator and denominator can often be converted to a rational integrand using the substitution \(u=\tan (x / 2)\) or \(x=2 \tan ^{-1} u .\) The following relations are used in making this change of variables. $$A: d x=\frac{2}{1+u^{2}} d u \quad B: \sin x=\frac{2 u}{1+u^{2}} \quad C: \cos x=\frac{1-u^{2}}{1+u^{2}}$$ $$\text { Evaluate } \int \frac{d x}{1+\sin x+\cos x}$$
The following integrals require a preliminary step such as long division or a change of variables before using partial fractions. Evaluate these integrals. $$\int \frac{e^{x}}{\left(e^{x}-1\right)\left(e^{x}+2\right)} d x$$
What do you think about this solution?
We value your feedback to improve our textbook solutions.