Chapter 7: Problem 66
Use integration by parts to evaluate the following integrals. $$\int_{0}^{\infty} x e^{-x} d x$$
Chapter 7: Problem 66
Use integration by parts to evaluate the following integrals. $$\int_{0}^{\infty} x e^{-x} d x$$
All the tools & learning materials you need for study success - in one app.
Get started for freeWhen is the volume finite? Let \(R\) be the region bounded by the graph of \(f(x)=x^{-p}\) and the \(x\) -axis, for \(x \geq 1.\) a. Let \(S\) be the solid generated when \(R\) is revolved about the \(x\) -axis. For what values of \(p\) is the volume of \(S\) finite? b. Let \(S\) be the solid generated when \(R\) is revolved about the \(y\) -axis. For what values of \(p\) is the volume of \(S\) finite?
By reduction formula 4 in Section 3 $$\int \sec ^{3} u d u=\frac{1}{2}(\sec u \tan u+\ln |\sec u+\tan u|)+C$$ Graph the following functions and find the area under the curve on the given interval. $$f(x)=\left(9-x^{2}\right)^{-2},\left[0, \frac{3}{2}\right]$$
An integrand with trigonometric functions in the numerator and denominator can often be converted to a rational integrand using the substitution \(u=\tan (x / 2)\) or \(x=2 \tan ^{-1} u .\) The following relations are used in making this change of variables. $$A: d x=\frac{2}{1+u^{2}} d u \quad B: \sin x=\frac{2 u}{1+u^{2}} \quad C: \cos x=\frac{1-u^{2}}{1+u^{2}}$$ $$\text { Evaluate } \int \frac{d x}{1-\cos x}$$
Graph the integrands and then evaluate and compare the values of \(\int_{0}^{\infty} x e^{-x^{2}} d x\) and \(\int_{0}^{\infty} x^{2} e^{-x^{2}} d x.\)
Use the following three identities to evaluate the given integrals. $$\begin{aligned}&\sin m x \sin n x=\frac{1}{2}[\cos ((m-n) x)-\cos ((m+n) x)]\\\&\sin m x \cos n x=\frac{1}{2}[\sin ((m-n) x)+\sin ((m+n) x)]\\\&\cos m x \cos n x=\frac{1}{2}[\cos ((m-n) x)+\cos ((m+n) x)]\end{aligned}$$ $$\int \sin 5 x \sin 7 x d x$$
What do you think about this solution?
We value your feedback to improve our textbook solutions.