Chapter 7: Problem 63
Evaluate the following integrals. $$\int \frac{x^{2}-8 x+16}{\left(9+8 x-x^{2}\right)^{3 / 2}} d x$$
Chapter 7: Problem 63
Evaluate the following integrals. $$\int \frac{x^{2}-8 x+16}{\left(9+8 x-x^{2}\right)^{3 / 2}} d x$$
All the tools & learning materials you need for study success - in one app.
Get started for freeBy reduction formula 4 in Section 3 $$\int \sec ^{3} u d u=\frac{1}{2}(\sec u \tan u+\ln |\sec u+\tan u|)+C$$ Graph the following functions and find the area under the curve on the given interval. $$f(x)=\left(x^{2}-25\right)^{1 / 2},[5,10]$$
Determine whether the following statements are true and give an explanation or counterexample. a. To evaluate \(\int \frac{4 x^{6}}{x^{4}+3 x^{2}} d x\), the first step is to find the partial fraction decomposition of the integrand. b. The easiest way to evaluate \(\int \frac{6 x+1}{3 x^{2}+x} d x\) is with a partial fraction decomposition of the integrand. c. The rational function \(f(x)=\frac{1}{x^{2}-13 x+42}\) has an irreducible quadratic denominator. d. The rational function \(f(x)=\frac{1}{x^{2}-13 x+43}\) has an irreducible quadratic denominator.
Refer to the summary box (Partial Fraction Decompositions) and evaluate the following integrals. $$\int \frac{2}{x\left(x^{2}+1\right)^{2}} d x$$
By reduction formula 4 in Section 3 $$\int \sec ^{3} u d u=\frac{1}{2}(\sec u \tan u+\ln |\sec u+\tan u|)+C$$ Graph the following functions and find the area under the curve on the given interval. $$f(x)=\left(9-x^{2}\right)^{-2},\left[0, \frac{3}{2}\right]$$
Let \(a>0\) and let \(R\) be the region bounded by the graph of \(y=e^{-a x}\) and the \(x\) -axis on the interval \([b, \infty).\) a. Find \(A(a, b),\) the area of \(R\) as a function of \(a\) and \(b\) b. Find the relationship \(b=g(a)\) such that \(A(a, b)=2\) c. What is the minimum value of \(b\) (call it \(b^{*}\) ) such that when \(b>b^{*}, A(a, b)=2\) for some value of \(a>0 ?\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.