Chapter 7: Problem 62
Find the volume of the solid generated when the region bounded by the graph of \(y=\sin x\) and the \(x\) -axis on the interval \([0, \pi]\) is revolved about the \(x\) -axis.
Chapter 7: Problem 62
Find the volume of the solid generated when the region bounded by the graph of \(y=\sin x\) and the \(x\) -axis on the interval \([0, \pi]\) is revolved about the \(x\) -axis.
All the tools & learning materials you need for study success - in one app.
Get started for freeUse the indicated substitution to convert the given integral to an integral of a rational function. Evaluate the resulting integral. $$\int \frac{d x}{\sqrt[4]{x+2}+1} ; x+2=u^{4}$$
a. Verify the identity \(\sec x=\frac{\cos x}{1-\sin ^{2} x}\) b. Use the identity in part (a) to verify that \(\int \sec x d x=\frac{1}{2} \ln \left|\frac{1+\sin x}{1-\sin x}\right|+C\) (Source: The College Mathematics Joumal \(32,\) No. 5 (November 2001))
$$\text { Evaluate } \int \frac{d x}{1+\sin x+\cos x} \text { using the }$$ substitution \(x=2 \tan ^{-1} \theta .\) The identities \(\sin x=2 \sin \frac{x}{2} \cos \frac{x}{2}\) and \(\cos x=\cos ^{2} \frac{x}{2}-\sin ^{2} \frac{x}{2}\) are helpful.
On the interval \([0,2],\) the graphs of \(f(x)=x^{2} / 3\) and \(g(x)=x^{2}\left(9-x^{2}\right)^{-1 / 2}\) have similar shapes. a. Find the area of the region bounded by the graph of \(f\) and the \(x\) -axis on the interval [0,2] b. Find the area of the region bounded by the graph of \(g\) and the \(x\) -axis on the interval [0,2] c. Which region has the greater area?
Graph the integrands and then evaluate and compare the values of \(\int_{0}^{\infty} x e^{-x^{2}} d x\) and \(\int_{0}^{\infty} x^{2} e^{-x^{2}} d x.\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.