Chapter 7: Problem 61
Find the volume of the solid generated when the region bounded by \(y=\cos x\) and the \(x\) -axis on the interval \([0, \pi / 2]\) is revolved about the \(y\) -axis.
Chapter 7: Problem 61
Find the volume of the solid generated when the region bounded by \(y=\cos x\) and the \(x\) -axis on the interval \([0, \pi / 2]\) is revolved about the \(y\) -axis.
All the tools & learning materials you need for study success - in one app.
Get started for freeUse numerical methods or a calculator to approximate the following integrals as closely as possible. $$\int_{0}^{\pi / 2} \ln (\sin x) d x=\int_{0}^{\pi / 2} \ln (\cos x) d x=-\frac{\pi \ln 2}{2}$$
Evaluate \(\int \frac{d y}{y(\sqrt{a}-\sqrt{y})},\) for \(a > 0\). (Hint: Use the substitution \(u=\sqrt{y}\) followed by partial fractions.)
An integrand with trigonometric functions in the numerator and denominator can often be converted to a rational integrand using the substitution \(u=\tan (x / 2)\) or \(x=2 \tan ^{-1} u .\) The following relations are used in making this change of variables. $$A: d x=\frac{2}{1+u^{2}} d u \quad B: \sin x=\frac{2 u}{1+u^{2}} \quad C: \cos x=\frac{1-u^{2}}{1+u^{2}}$$ $$\text { Evaluate } \int \frac{d x}{2+\cos x}$$
The following integrals require a preliminary step such as long division or a change of variables before using partial fractions. Evaluate these integrals. $$\int \frac{d x}{\left(e^{x}+e^{-x}\right)^{2}}$$
An integrand with trigonometric functions in the numerator and denominator can often be converted to a rational integrand using the substitution \(u=\tan (x / 2)\) or \(x=2 \tan ^{-1} u .\) The following relations are used in making this change of variables. $$A: d x=\frac{2}{1+u^{2}} d u \quad B: \sin x=\frac{2 u}{1+u^{2}} \quad C: \cos x=\frac{1-u^{2}}{1+u^{2}}$$ $$\text { Evaluate } \int \frac{d x}{1+\sin x}$$
What do you think about this solution?
We value your feedback to improve our textbook solutions.