Chapter 7: Problem 61
Find the volume of the following solids. The region bounded by \(y=1 /(x+2), y=0, x=0,\) and \(x=3\) is revolved about the line \(x=-1\)
Chapter 7: Problem 61
Find the volume of the following solids. The region bounded by \(y=1 /(x+2), y=0, x=0,\) and \(x=3\) is revolved about the line \(x=-1\)
All the tools & learning materials you need for study success - in one app.
Get started for freeUse the indicated substitution to convert the given integral to an integral of a rational function. Evaluate the resulting integral. $$\int \frac{d x}{\sqrt{x}+\sqrt[3]{x}} ; x=u^{6}$$
An integrand with trigonometric functions in the numerator and denominator can often be converted to a rational integrand using the substitution \(u=\tan (x / 2)\) or \(x=2 \tan ^{-1} u .\) The following relations are used in making this change of variables. $$A: d x=\frac{2}{1+u^{2}} d u \quad B: \sin x=\frac{2 u}{1+u^{2}} \quad C: \cos x=\frac{1-u^{2}}{1+u^{2}}$$ $$\text { Evaluate } \int \frac{d x}{1-\cos x}$$
Use the indicated substitution to convert the given integral to an integral of a rational function. Evaluate the resulting integral. $$\int \frac{d x}{x-\sqrt[4]{x}} ; x=u^{4}$$
Evaluate \(\int \frac{d x}{x^{2}-1},\) for \(x > 1,\) in two ways: using partial fractions and a trigonometric substitution. Reconcile your two answers.
The following integrals require a preliminary step such as long division or a change of variables before using partial fractions. Evaluate these integrals. $$\int \frac{\sec \theta}{1+\sin \theta} d \theta$$
What do you think about this solution?
We value your feedback to improve our textbook solutions.