Chapter 7: Problem 59
Evaluate the following integrals. $$\int \frac{d x}{x^{2}+6 x+18}$$
Chapter 7: Problem 59
Evaluate the following integrals. $$\int \frac{d x}{x^{2}+6 x+18}$$
All the tools & learning materials you need for study success - in one app.
Get started for freeEvaluate the following integrals. Consider completing the square. $$\int \frac{d x}{\sqrt{(x-1)(3-x)}}$$
Water is drained from a 3000 -gal tank at a rate that starts at 100 gal/hr and decreases continuously by \(5 \% / \mathrm{hr}\). If the drain is left open indefinitely, how much water is drained from the tank? Can a full tank be emptied at this rate?
\(A\) powerful tool in solving problems in engineering and physics is the Laplace transform. Given a function \(f(t),\) the Laplace transform is a new function \(F(s)\) defined by $$ F(s)=\int_{0}^{\infty} e^{-s t} f(t) d t $$ where we assume that s is a positive real number. For example, to find the Laplace transform of \(f(t)=e^{-t},\) the following improper integral is evaluated: $$ F(s)=\int_{0}^{\infty} e^{-s t} e^{-t} d t=\int_{0}^{\infty} e^{-(s+1) t} d t=\frac{1}{s+1} $$ Verify the following Laplace transforms, where a is a real number. $$f(t)=\cos a t \longrightarrow F(s)=\frac{s}{s^{2}+a^{2}}$$
\(A\) powerful tool in solving problems in engineering and physics is the Laplace transform. Given a function \(f(t),\) the Laplace transform is a new function \(F(s)\) defined by $$ F(s)=\int_{0}^{\infty} e^{-s t} f(t) d t $$ where we assume that s is a positive real number. For example, to find the Laplace transform of \(f(t)=e^{-t},\) the following improper integral is evaluated: $$ F(s)=\int_{0}^{\infty} e^{-s t} e^{-t} d t=\int_{0}^{\infty} e^{-(s+1) t} d t=\frac{1}{s+1} $$ Verify the following Laplace transforms, where a is a real number. $$f(t)=1 \longrightarrow F(s)=\frac{1}{s}$$
When is the volume finite? Let \(R\) be the region bounded by the graph of
\(f(x)=x^{-p}\) and the \(x\) -axis, for \(0
What do you think about this solution?
We value your feedback to improve our textbook solutions.