Chapter 7: Problem 58
Evaluate the following integrals. $$\int \frac{d x}{x^{2}-2 x+10}$$
Chapter 7: Problem 58
Evaluate the following integrals. $$\int \frac{d x}{x^{2}-2 x+10}$$
All the tools & learning materials you need for study success - in one app.
Get started for freeBy reduction formula 4 in Section 3 $$\int \sec ^{3} u d u=\frac{1}{2}(\sec u \tan u+\ln |\sec u+\tan u|)+C$$ Graph the following functions and find the area under the curve on the given interval. $$f(x)=\left(9-x^{2}\right)^{-2},\left[0, \frac{3}{2}\right]$$
Use the Trapezoid Rule (Section 7 ) to approximate \(\int_{0}^{R} e^{-x^{2}} d x\) with \(R=2,4,\) and 8. For each value of \(R\), take \(n=4,8,16,\) and \(32,\) and compare approximations with successive values of \(n .\) Use these approximations to approximate \(I=\int_{0}^{\infty} e^{-x^{2}} d x.\)
Use symmetry to evaluate the following integrals. a. \(\int_{-\infty}^{\infty} e^{|x|} d x \quad\) b. \(\int_{-\infty}^{\infty} \frac{x^{3}}{1+x^{8}} d x\)
Evaluate the following integrals. Consider completing the square. $$\int \frac{d x}{\sqrt{(x-1)(3-x)}}$$
Suppose that a function \(f\) has derivatives of all orders near \(x=0 .\) By the Fundamental Theorem of Calculus, \(f(x)-f(0)=\int_{0}^{x} f^{\prime}(t) d t\) a. Evaluate the integral using integration by parts to show that $$f(x)=f(0)+x f^{\prime}(0)+\int_{0}^{x} f^{\prime \prime}(t)(x-t) d t.$$ b. Show (by observing a pattern or using induction) that integrating by parts \(n\) times gives $$\begin{aligned} f(x)=& f(0)+x f^{\prime}(0)+\frac{1}{2 !} x^{2} f^{\prime \prime}(0)+\cdots+\frac{1}{n !} x^{n} f^{(n)}(0) \\ &+\frac{1}{n !} \int_{0}^{x} f^{(n+1)}(t)(x-t)^{n} d t+\cdots \end{aligned}$$ This expression is called the Taylor series for \(f\) at \(x=0\).
What do you think about this solution?
We value your feedback to improve our textbook solutions.