Chapter 7: Problem 57
Evaluate \(\int \cos \sqrt{x} d x\) using a substitution followed by integration by parts.
Chapter 7: Problem 57
Evaluate \(\int \cos \sqrt{x} d x\) using a substitution followed by integration by parts.
All the tools & learning materials you need for study success - in one app.
Get started for freeThree cars, \(A, B,\) and \(C,\) start from rest and accelerate along a line according to the following velocity functions: $$v_{A}(t)=\frac{88 t}{t+1}, \quad v_{B}(t)=\frac{88 t^{2}}{(t+1)^{2}}, \quad \text { and } \quad v_{C}(t)=\frac{88 t^{2}}{t^{2}+1}$$ a. Which car has traveled farthest on the interval \(0 \leq t \leq 1 ?\) b. Which car has traveled farthest on the interval \(0 \leq t \leq 5 ?\) c. Find the position functions for the three cars assuming that all cars start at the origin. d. Which car ultimately gains the lead and remains in front?
Consider the curve \(y=\ln x\) a. Find the length of the curve from \(x=1\) to \(x=a\) and call it \(L(a) .\) (Hint: The change of variables \(u=\sqrt{x^{2}+1}\) allows evaluation by partial fractions.) b. Graph \(L(a)\) c. As \(a\) increases, \(L(a)\) increases as what power of \(a ?\)
The following integrals require a preliminary step such as long division or a change of variables before using partial fractions. Evaluate these integrals. $$\int \frac{d x}{1+e^{x}}$$
Evaluate the following integrals or state that they diverge. $$\int_{0}^{\pi / 2} \sec \theta d \theta$$
On the interval \([0,2],\) the graphs of \(f(x)=x^{2} / 3\) and \(g(x)=x^{2}\left(9-x^{2}\right)^{-1 / 2}\) have similar shapes. a. Find the area of the region bounded by the graph of \(f\) and the \(x\) -axis on the interval [0,2] b. Find the area of the region bounded by the graph of \(g\) and the \(x\) -axis on the interval [0,2] c. Which region has the greater area?
What do you think about this solution?
We value your feedback to improve our textbook solutions.