Chapter 7: Problem 53
Use the approaches discussed in this section to evaluate the following integrals. $$\int_{1}^{3} \frac{2}{x^{2}+2 x+1} d x$$
Chapter 7: Problem 53
Use the approaches discussed in this section to evaluate the following integrals. $$\int_{1}^{3} \frac{2}{x^{2}+2 x+1} d x$$
All the tools & learning materials you need for study success - in one app.
Get started for freeWhen is the volume finite? Let \(R\) be the region bounded by the graph of
\(f(x)=x^{-p}\) and the \(x\) -axis, for \(0
\(A\) powerful tool in solving problems in engineering and physics is the Laplace transform. Given a function \(f(t),\) the Laplace transform is a new function \(F(s)\) defined by $$ F(s)=\int_{0}^{\infty} e^{-s t} f(t) d t $$ where we assume that s is a positive real number. For example, to find the Laplace transform of \(f(t)=e^{-t},\) the following improper integral is evaluated: $$ F(s)=\int_{0}^{\infty} e^{-s t} e^{-t} d t=\int_{0}^{\infty} e^{-(s+1) t} d t=\frac{1}{s+1} $$ Verify the following Laplace transforms, where a is a real number. $$f(t)=e^{a t} \longrightarrow F(s)=\frac{1}{s-a}$$
a. Verify the identity \(\sec x=\frac{\cos x}{1-\sin ^{2} x}\) b. Use the identity in part (a) to verify that \(\int \sec x d x=\frac{1}{2} \ln \left|\frac{1+\sin x}{1-\sin x}\right|+C\) (Source: The College Mathematics Joumal \(32,\) No. 5 (November 2001))
By reduction formula 4 in Section 3 $$\int \sec ^{3} u d u=\frac{1}{2}(\sec u \tan u+\ln |\sec u+\tan u|)+C$$ Graph the following functions and find the area under the curve on the given interval. $$f(x)=\left(9-x^{2}\right)^{-2},\left[0, \frac{3}{2}\right]$$
The following integrals require a preliminary step such as long division or a change of variables before using partial fractions. Evaluate these integrals. $$\int \sqrt{e^{x}+1} d x \text { (Hint: Let } u=\sqrt{e^{x}+1}$$
What do you think about this solution?
We value your feedback to improve our textbook solutions.