Chapter 7: Problem 53
Use a computer algebra system to evaluate the following indefinite integrals. Assume that a is a positive real number. $$\int\left(a^{2}-x^{2}\right)^{3 / 2} d x$$
Chapter 7: Problem 53
Use a computer algebra system to evaluate the following indefinite integrals. Assume that a is a positive real number. $$\int\left(a^{2}-x^{2}\right)^{3 / 2} d x$$
All the tools & learning materials you need for study success - in one app.
Get started for freeUse the indicated substitution to convert the given integral to an integral of a rational function. Evaluate the resulting integral. $$\int \frac{d x}{\sqrt[4]{x+2}+1} ; x+2=u^{4}$$
Decaying oscillations Let \(a>0\) and \(b\) be real numbers. Use integration to confirm the following identities. a. \(\int_{0}^{\infty} e^{-a x} \cos b x d x=\frac{a}{a^{2}+b^{2}}\) b. \(\int_{0}^{\infty} e^{-a x} \sin b x d x=\frac{b}{a^{2}+b^{2}}\)
An integrand with trigonometric functions in the numerator and denominator can often be converted to a rational integrand using the substitution \(u=\tan (x / 2)\) or \(x=2 \tan ^{-1} u .\) The following relations are used in making this change of variables. $$A: d x=\frac{2}{1+u^{2}} d u \quad B: \sin x=\frac{2 u}{1+u^{2}} \quad C: \cos x=\frac{1-u^{2}}{1+u^{2}}$$ $$\text { Evaluate } \int \frac{d \theta}{\cos \theta-\sin \theta}$$
By reduction formula 4 in Section 3 $$\int \sec ^{3} u d u=\frac{1}{2}(\sec u \tan u+\ln |\sec u+\tan u|)+C$$ Graph the following functions and find the area under the curve on the given interval. $$f(x)=\left(9-x^{2}\right)^{-2},\left[0, \frac{3}{2}\right]$$
Imagine that today you deposit \(\$ B\) in a savings account that earns interest at a rate of \(p \%\) per year compounded continuously. The goal is to draw an income of \(\$ I\) per year from the account forever. The amount of money that must be deposited is \(B=I \int_{0}^{\infty} e^{-n t} d t,\) where \(r=p / 100 .\) Suppose you find an account that earns \(12 \%\) interest annully and you wish to have an income from the account of \(\$ 5000\) per year. How much must you deposit today?
What do you think about this solution?
We value your feedback to improve our textbook solutions.