Chapter 7: Problem 52
Find the volume of the described solid of revolution or state that it does not exist. The region bounded by \(f(x)=\left(x^{2}-1\right)^{-1 / 4}\) and the \(x\) -axis on the interval (1,2] is revolved about the \(y\) -axis.
Chapter 7: Problem 52
Find the volume of the described solid of revolution or state that it does not exist. The region bounded by \(f(x)=\left(x^{2}-1\right)^{-1 / 4}\) and the \(x\) -axis on the interval (1,2] is revolved about the \(y\) -axis.
All the tools & learning materials you need for study success - in one app.
Get started for freeUse integration by parts to evaluate the following integrals. $$\int_{1}^{\infty} \frac{\ln x}{x^{2}} d x$$
An important function in statistics is the Gaussian (or normal distribution, or bell-shaped curve), \(f(x)=e^{-a x^{2}}.\) a. Graph the Gaussian for \(a=0.5,1,\) and 2. b. Given that \(\int_{-\infty}^{\infty} e^{-a x^{2}} d x=\sqrt{\frac{\pi}{a}},\) compute the area under the curves in part (a). c. Complete the square to evaluate \(\int_{-\infty}^{\infty} e^{-\left(a x^{2}+b x+c\right)} d x,\) where \(a>0, b,\) and \(c\) are real numbers.
Find the volume of the described solid of revolution or state that it does not exist. The region bounded by \(f(x)=(x+1)^{-3 / 2}\) and the \(y\) -axis on the interval (-1,1] is revolved about the line \(x=-1.\)
Suppose that a function \(f\) has derivatives of all orders near \(x=0 .\) By the Fundamental Theorem of Calculus, \(f(x)-f(0)=\int_{0}^{x} f^{\prime}(t) d t\) a. Evaluate the integral using integration by parts to show that $$f(x)=f(0)+x f^{\prime}(0)+\int_{0}^{x} f^{\prime \prime}(t)(x-t) d t.$$ b. Show (by observing a pattern or using induction) that integrating by parts \(n\) times gives $$\begin{aligned} f(x)=& f(0)+x f^{\prime}(0)+\frac{1}{2 !} x^{2} f^{\prime \prime}(0)+\cdots+\frac{1}{n !} x^{n} f^{(n)}(0) \\ &+\frac{1}{n !} \int_{0}^{x} f^{(n+1)}(t)(x-t)^{n} d t+\cdots \end{aligned}$$ This expression is called the Taylor series for \(f\) at \(x=0\).
\(A\) powerful tool in solving problems in engineering and physics is the Laplace transform. Given a function \(f(t),\) the Laplace transform is a new function \(F(s)\) defined by $$ F(s)=\int_{0}^{\infty} e^{-s t} f(t) d t $$ where we assume that s is a positive real number. For example, to find the Laplace transform of \(f(t)=e^{-t},\) the following improper integral is evaluated: $$ F(s)=\int_{0}^{\infty} e^{-s t} e^{-t} d t=\int_{0}^{\infty} e^{-(s+1) t} d t=\frac{1}{s+1} $$ Verify the following Laplace transforms, where a is a real number. $$f(t)=1 \longrightarrow F(s)=\frac{1}{s}$$
What do you think about this solution?
We value your feedback to improve our textbook solutions.