Chapter 7: Problem 49
Use the approaches discussed in this section to evaluate the following integrals. $$\int \frac{x-2}{x^{2}+6 x+13} d x$$
Chapter 7: Problem 49
Use the approaches discussed in this section to evaluate the following integrals. $$\int \frac{x-2}{x^{2}+6 x+13} d x$$
All the tools & learning materials you need for study success - in one app.
Get started for freeShow that \(L=\lim _{n \rightarrow \infty}\left(\frac{1}{n} \ln n !-\ln n\right)=-1\) in the following steps. a. Note that \(n !=n(n-1)(n-2) \cdots 1\) and use \(\ln (a b)=\ln a+\ln b\) to show that $$ \begin{aligned} L &=\lim _{n \rightarrow \infty}\left[\left(\frac{1}{n} \sum_{k=1}^{n} \ln k\right)-\ln n\right] \\ &=\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{k=1}^{n} \ln \left(\frac{k}{n}\right) \end{aligned} $$ b. Identify the limit of this sum as a Riemann sum for \(\int_{0}^{1} \ln x d x\) Integrate this improper integral by parts and reach the desired conclusion.
Circumference of a circle Use calculus to find the circumference of a circle with radius \(a.\)
The following integrals require a preliminary step such as long division or a change of variables before using partial fractions. Evaluate these integrals. $$\int \frac{2 x^{3}+x^{2}-6 x+7}{x^{2}+x-6} d x$$
Let \(R\) be the region between the curves \(y=e^{-c x}\) and \(y=-e^{-c x}\) on the interval \([a, \infty),\) where \(a \geq 0\) and \(c \geq 0 .\) The center of mass of \(R\) is located at \((\bar{x}, 0)\) where \(\bar{x}=\frac{\int_{a}^{\infty} x e^{-c x} d x}{\int_{a}^{\infty} e^{-c x} d x} .\) (The profile of the Eiffel Tower is modeled by the two exponential curves.) a. For \(a=0\) and \(c=2,\) sketch the curves that define \(R\) and find the center of mass of \(R\). Indicate the location of the center of mass. b. With \(a=0\) and \(c=2,\) find equations of the lines tangent to the curves at the points corresponding to \(x=0.\) c. Show that the tangent lines intersect at the center of mass. d. Show that this same property holds for any \(a \geq 0\) and any \(c>0 ;\) that is, the tangent lines to the curves \(y=\pm e^{-c x}\) at \(x=a\) intersect at the center of mass of \(R\) (Source: P. Weidman and I. Pinelis, Comptes Rendu, Mechanique \(332(2004): 571-584 .)\)
Many methods needed Show that \(\int_{0}^{\infty} \frac{\sqrt{x} \ln x}{(1+x)^{2}} d x=\pi\) in the following steps. a. Integrate by parts with \(u=\sqrt{x} \ln x.\) b. Change variables by letting \(y=1 / x.\) c. Show that \(\int_{0}^{1} \frac{\ln x}{\sqrt{x}(1+x)} d x=-\int_{1}^{\infty} \frac{\ln x}{\sqrt{x}(1+x)} d x\) and conclude that \(\int_{0}^{\infty} \frac{\ln x}{\sqrt{x}(1+x)} d x=0.\) d. Evaluate the remaining integral using the change of variables \(z=\sqrt{x}\) (Source: Mathematics Magazine 59, No. 1 (February 1986): 49).
What do you think about this solution?
We value your feedback to improve our textbook solutions.