Chapter 7: Problem 49
Use a computer algebra system to evaluate the following indefinite integrals. Assume that a is a positive real number. $$\int \tan ^{2} 3 x d x$$
Chapter 7: Problem 49
Use a computer algebra system to evaluate the following indefinite integrals. Assume that a is a positive real number. $$\int \tan ^{2} 3 x d x$$
All the tools & learning materials you need for study success - in one app.
Get started for free\(A\) total charge of \(Q\) is distributed uniformly on a line segment of length \(2 L\) along the \(y\) -axis (see figure). The \(x\) -component of the electric field at a point \((a, 0)\) on the \(x\) -axis is given by $$E_{x}(a)=\frac{k Q a}{2 L} \int_{-L}^{L} \frac{d y}{\left(a^{2}+y^{2}\right)^{3 / 2}}$$ where \(k\) is a physical constant and \(a>0\) a. Confirm that \(E_{x}(a)=\frac{k Q}{a \sqrt{a^{2}+L^{2}}}\) b. Letting \(\rho=Q / 2 L\) be the charge density on the line segment, show that if \(L \rightarrow \infty,\) then \(E_{x}(a)=2 k \rho / a\)
When is the volume finite? Let \(R\) be the region bounded by the graph of \(f(x)=x^{-p}\) and the \(x\) -axis, for \(x \geq 1.\) a. Let \(S\) be the solid generated when \(R\) is revolved about the \(x\) -axis. For what values of \(p\) is the volume of \(S\) finite? b. Let \(S\) be the solid generated when \(R\) is revolved about the \(y\) -axis. For what values of \(p\) is the volume of \(S\) finite?
Let \(a>0\) and let \(R\) be the region bounded by the graph of \(y=e^{-a x}\) and the \(x\) -axis on the interval \([b, \infty).\) a. Find \(A(a, b),\) the area of \(R\) as a function of \(a\) and \(b\) b. Find the relationship \(b=g(a)\) such that \(A(a, b)=2\) c. What is the minimum value of \(b\) (call it \(b^{*}\) ) such that when \(b>b^{*}, A(a, b)=2\) for some value of \(a>0 ?\)
For what values of \(p\) does the integral \(\int_{2}^{\infty} \frac{d x}{x \ln ^{p} x}\) exist and what is its value (in terms of \(p\) )?
Recall that the substitution \(x=a \sec \theta\) implies that \(x \geq a\) (in which case \(0 \leq \theta<\pi / 2\) and \(\tan \theta \geq 0\) ) or \(x \leq-a\) (in which case \(\pi / 2<\theta \leq \pi\) and \(\tan \theta \leq 0\) ). Evaluate for \(\int \frac{\sqrt{x^{2}-1}}{x^{3}} d x,\) for \(x>1\) and for \(x<-1\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.