Chapter 7: Problem 49
Evaluate the following integrals. $$\int \frac{x^{2}}{x^{3}-x^{2}+4 x-4} d x$$
Chapter 7: Problem 49
Evaluate the following integrals. $$\int \frac{x^{2}}{x^{3}-x^{2}+4 x-4} d x$$
All the tools & learning materials you need for study success - in one app.
Get started for freeThe following integrals require a preliminary step such as long division or a change of variables before using partial fractions. Evaluate these integrals. $$\int \sqrt{e^{x}+1} d x \text { (Hint: Let } u=\sqrt{e^{x}+1}$$
Bob and Bruce bake bagels (shaped like tori). They both make standard bagels that have an inner radius of 0.5 in and an outer radius of 2.5 in. Bob plans to increase the volume of his bagels by decreasing the inner radius by \(20 \%\) (leaving the outer radius unchanged). Bruce plans to increase the volume of his bagels by increasing the outer radius by \(20 \%\) (leaving the inner radius unchanged). Whose new bagels will have the greater volume? Does this result depend on the size of the original bagels? Explain.
The following integrals require a preliminary step such as long division or a change of variables before using partial fractions. Evaluate these integrals. $$\int \frac{\sec \theta}{1+\sin \theta} d \theta$$
The following integrals require a preliminary step such as long division or a change of variables before using partial fractions. Evaluate these integrals. $$\int \frac{3 x^{2}+4 x-6}{x^{2}-3 x+2} d x$$
Find the volume of the described solid of revolution or state that it does not exist. The region bounded by \(f(x)=(x-1)^{-1 / 4}\) and the \(x\) -axis on the interval (1,2] is revolved about the \(x\) -axis.
What do you think about this solution?
We value your feedback to improve our textbook solutions.