Chapter 7: Problem 100
Show that \(L=\lim _{n \rightarrow \infty}\left(\frac{1}{n} \ln n !-\ln n\right)=-1\) in the following steps. a. Note that \(n !=n(n-1)(n-2) \cdots 1\) and use \(\ln (a b)=\ln a+\ln b\) to show that $$ \begin{aligned} L &=\lim _{n \rightarrow \infty}\left[\left(\frac{1}{n} \sum_{k=1}^{n} \ln k\right)-\ln n\right] \\ &=\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{k=1}^{n} \ln \left(\frac{k}{n}\right) \end{aligned} $$ b. Identify the limit of this sum as a Riemann sum for \(\int_{0}^{1} \ln x d x\) Integrate this improper integral by parts and reach the desired conclusion.
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.